• Corpus ID: 51876185

Longest cycles in cyclically 4-edge-connected cubic planar graphs

  title={Longest cycles in cyclically 4-edge-connected cubic planar graphs},
  author={On-Hei Solomon Lo and Jens M. Schmidt},
  journal={Australas. J Comb.},
Notes from the publisher’s Homepage (2018-11-26): „The depositing of our published papers in other repositories for non-commercial use is allowed, although we prefer the format used to be identical to that as published by us, with our pagination and layout. 

Figures from this paper

Circumference of essentially 4-connected planar triangulations
It is proved that every essentially 4-connected maximal planar graph G on n vertices contains a cycle of length at least 2 3 (n+ 4); moreover, this bound is sharp.
Shortness Coefficient of Cyclically 4-Edge-Connected Cubic Graphs
It is shown that 45/46 is an upper bound for the shortness coefficient of cyclically 4-edge-connected cubic graphs of genus g with face lengths bounded above by some constant larger than 22 for any prescribed g ≥ 0.
On the Circumference of 3-Connected Cubic Triangle-Free Plane Graphs
<jats:p>The circumference of a graph <jats:inline-formula> <math xmlns="http://www.w3.org/1998/Math/MathML" id="M1"> <mi>G</mi>


Long Cycles in 3-Connected Graphs
The conjecture that if G is a 3-connected planar graph on n vertices, then G contains a cycle of length at least Ω(nlog32) is proved.
A note on 3-connected cubic planar graphs
Longest Cycles in 3-Connected 3-Regular Graphs
In this paper, we study the following question: How long a cycle must there be in a 3-connected 3-regular graph on n vertices? For planar graphs this question goes back to Tait [6], who conjectured
Longest cycles and their chords
On etablit la conjecture de Thomassen concernant l'existence d'une corde pour tous les plus longs cycles d'un graphe 3-connexe dans le cas d'un graphe planaire s'il est cubique ou si δ≥4
Shortness Exponents of Families of Graphs
Circumference of 3-connected cubic graphs
Shortness coefficient of cyclically 5-connected cubic planar graphs
DigiZeitschriften e.V. gewährt ein nicht exklusives, nicht übertragbares, persönliches und beschränktes Recht auf Nutzung dieses Dokuments. Dieses Dokument ist ausschließlich für den persönlichen,
Younger, Non-Hamiltonian cubic planar maps, Discrete Math
  • 1974
Malkevitch, Pairs of edge-disjoint Hamiltonian circuits, Aequationes Math
  • 1976
Simple paths on polyhedra.