Long-term potentiation in an isolated peripheral nerve-spinal cord preparation.

Abstract

1. Long-lasting increases in synaptic efficacy following repetitive stimulation have been demonstrated at several sites in the CNS, where they are collectively termed long-term potentiation (LTP). LTP is of interest with respect to its presumptive relationship to learning and memory in hippocampus. In the spinal cord in vivo, an LTP-like phenomenon is thought to underlie the allodynia and hyperalgesia that follows some peripheral injuries. 2. We investigated the capacity of the isolated neonatal rat spinal cord to sustain a long-lasting increase in a nociceptive-related slow ventral root potential (sVRP) recorded from a lumbar root after a tetanic train of stimuli to the peripheral cutaneous saphenous nerve. Stimuli were delivered at a low constant (0.02 s-1) frequency during a 30-min control period. A tetanic stimulus train (10 s-1 for 60 s) was then given followed by a resumption of low (0.02 s-1) frequency stimulation. Potentiation was defined as an increase in sVRP area > 2 SD above control mean. 3. Twenty of 20 preparations showed immediate posttetanic potentiation. In 13 of the 20, potentiation was maintained for > or = 1 h after the tetanic stimulus train. 4. Potentiation was dependent on activation of C fibers during the inducing train; stimuli below C-fiber threshold, activating only A fibers, were ineffective. Potentiation was selectively expressed by a long-latency component of the sVRP elicited by stimuli at a strength that evoked both A- and C-fiber responses in the nerve.(ABSTRACT TRUNCATED AT 250 WORDS)

Statistics

02040'97'99'01'03'05'07'09'11'13'15'17
Citations per Year

157 Citations

Semantic Scholar estimates that this publication has 157 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Lozier1995LongtermPI, title={Long-term potentiation in an isolated peripheral nerve-spinal cord preparation.}, author={Anne Lozier and Joan J. Kendig}, journal={Journal of neurophysiology}, year={1995}, volume={74 3}, pages={1001-9} }