Long-Time Asymptotics for the Korteweg–de Vries Equation via Nonlinear Steepest Descent

@article{Grunert2009LongTimeAF,
  title={Long-Time Asymptotics for the Korteweg–de Vries Equation via Nonlinear Steepest Descent},
  author={K. Grunert and G. Teschl},
  journal={Mathematical Physics, Analysis and Geometry},
  year={2009},
  volume={12},
  pages={287-324}
}
  • K. Grunert, G. Teschl
  • Published 2009
  • Mathematics, Physics
  • Mathematical Physics, Analysis and Geometry
  • We apply the method of nonlinear steepest descent to compute the long-time asymptotics of the Korteweg–de Vries equation for decaying initial data in the soliton and similarity region. This paper can be viewed as an expository introduction to this method. 
    91 Citations

    Figures from this paper.

    LONG-TIME ASYMPTOTICS FOR THE KORTEWEG–DE VRIES EQUATION WITH STEPLIKE INITIAL DATA
    • 15
    • PDF
    Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data
    • 43
    • PDF
    Rarefaction waves of the Korteweg–de Vries equation via nonlinear steepest descent
    • 18
    • PDF
    Long-time Asymptotics for the Camassa-Holm Equation
    • 104
    • PDF

    References

    SHOWING 1-10 OF 81 REFERENCES
    Long-time asymptotics for the Toda lattice in the soliton region
    • 36
    • PDF
    Asymptotic Solutions of the Korteweg-deVries Equation
    • 170
    • Highly Influential
    LONG-TIME ASYMPTOTICS OF THE TODA LATTICE FOR DECAYING INITIAL DATA REVISITED
    • 45
    • PDF
    Exact solution of the Korteweg-deVries equation for multiple collision of solitons
    • 2,177
    Korteweg de-Vries Equation
    • 33
    The Exact N-Soliton Solution of the Korteweg-de Vries Equation
    • 172
    • Highly Influential
    Asymptotic solutions of nonlinear evolution equations and a Painlevé transcedent
    • 68
    • Highly Influential
    The collisionless shock region for the long-time behavior of solutions of the KdV equation
    • 149
    • Highly Influential