# Logarithmic topological Hochschild homology of topological K-theory spectra

@inproceedings{Rognes2014LogarithmicTH, title={Logarithmic topological Hochschild homology of topological K-theory spectra}, author={John Rognes and Steffen Sagave and Christian Schlichtkrull}, year={2014} }

In this paper we continue our study of logarithmic topological Hochschild homology. We show that the inclusion of the connective Adams summand into the p-local complex connective K-theory spectrum, equipped with suitable log structures, is a formally log THH-etale map, and compute the V(1)-homotopy of their logarithmic topological Hochschild homology spectra. As an application, we recover Ausoni's computation of the V(1)-homotopy of the ordinary THH of ku.

Create an AI-powered research feed to stay up to date with new papers like this posted to ArXiv

#### Citations

##### Publications citing this paper.

SHOWING 1-4 OF 4 CITATIONS

## Virtual vector bundles and graded Thom spectra

VIEW 4 EXCERPTS

CITES METHODS

## On the Brun spectral sequence for topological Hochschild homology

VIEW 1 EXCERPT

CITES BACKGROUND

## Annalen Localization sequences for logarithmic topological Hochschild homology

VIEW 2 EXCERPTS

CITES METHODS

#### References

##### Publications referenced by this paper.

SHOWING 1-10 OF 15 REFERENCES