# Local unitary representations of the braid group and their applications to quantum computing

@article{Delaney2016LocalUR, title={Local unitary representations of the braid group and their applications to quantum computing}, author={Colleen Delaney and Eric C. Rowell and Zhenghan Wang}, journal={arXiv: Quantum Algebra}, year={2016} }

We provide an elementary introduction to topological quantum computation based on the Jones representation of the braid group. We first cover the Burau representation and Alexander polynomial. Then we discuss the Jones representation and Jones polynomial and their application to anyonic quantum computation. Finally we outline the approximation of the Jones polynomial and explicit localizations of braid group representations.

## 20 Citations

### Braids, Motions and Topological Quantum Computing

- Mathematics
- 2022

. The topological model for quantum computation is an inherently fault-tolerant model built on anyons in topological phases of matter. A key role is played by the braid group, and in this survey we…

### On Classification of Low-Dimensional Irreducible Representations of B 5

- Mathematics
- 2017

The design for a topological quantum computer is based on anyon braiding. It uses topology to protect quantum information against decoherence. We may model the space-time trajectory of a system of n…

### Topological Quantum Computation on Supersymmetric Spin Chains

- Physics
- 2022

Quantum gates built out of braid group elements form the building blocks of topological quantum computation. They have been extensively studied in SU (2) k quantum group theories, a rich source of…

### Symmetry defects and their application to topological quantum computing

- MathematicsTopological Phases of Matter and Quantum Computation
- 2020

We describe the mathematical theory of topological quantum computing with symmetry defects in the language of fusion categories and unitary representations. Symmetry defects together with anyons are…

### Math 191 Long Project: Braid Groups, Representations, and Algebras

- Mathematics, Computer Science
- 2018

Alternative ways of realizing quantum computing have turned out to be natural settings for certain implementations and algorithms, particularly if one can construct a certain class of operators on a Hilbert space.

### On a class of unitary representations of the braid groups B3 and B4

- MathematicsBulletin des Sciences Mathématiques
- 2019

### Mathematics of Topological Quantum Computing

- Physics
- 2017

In topological quantum computing, information is encoded in "knotted" quantum states of topological phases of matter, thus being locked into topology to prevent decay. Topological precision has been…

### Local unitary representation of braids and N-qubit entanglements

- PhysicsQuantum Inf. Process.
- 2018

It is shown that the separability of varPsi \rangle = B|0⟩⊗N is closely related to the diagrammatic version of the braid operator $$\mathcal {B}$$B.

### Anyons in geometric models of matter

- Mathematics, Geology
- 2016

A bstractWe show that the “geometric models of matter” approach proposed by the first author can be used to construct models of anyon quasiparticles with fractional quantum numbers, using…

### Anyons and the HOMFLY Skein Algebra

- Mathematics
- 2018

We give an exposition of how the Kauffman bracket arises for certain systems of anyons, and do so outside the usual arena of Temperley-Lieb-Jones categories. This is further elucidated through the…

## References

SHOWING 1-10 OF 29 REFERENCES

### A Modular Functor Which is Universal¶for Quantum Computation

- Physics
- 2000

Abstract:We show that the topological modular functor from Witten–Chern–Simons theory is universal for quantum computation in the sense that a quantum circuit computation can be efficiently…

### Braid representations from quantum groups of exceptional lie type

- Mathematics
- 2010

We study the problem of determining if the braid group representations
obtained from quantum groups of types E, F and G at roots of
unity have infinite image or not. In particular we show that when…

### Localization of Unitary Braid Group Representations

- Mathematics
- 2012

Governed by locality, we explore a connection between unitary braid group representations associated to a unitary R-matrix and to a simple object in a unitary braided fusion category. Unitary…

### The Two-Eigenvalue Problem and Density¶of Jones Representation of Braid Groups

- Mathematics
- 2002

Introduction
1. The two-eigenvalue problem
2. Hecke algebra representations of braid groups
3. Duality of Jones-Wenzl representations
4. Closed images of Jones-Wenzl sectors
5. Distribution of…

### An algebra-level version of a link-polynomial identity of Lickorish

- MathematicsMathematical Proceedings of the Cambridge Philosophical Society
- 2008

Abstract We establish isomorphisms between certain specializations of BMW algebras and the symmetric squares of Temperley–Lieb algebras. These isomorphisms imply a link-polynomial identity due to W.…

### Extraspecial 2-groups and images of braid group representations

- Mathematics
- 2005

We investigate a family of (reducible) representations of the braid groups Bn corresponding to a specific solution to the Yang‐Baxter equation. The images of Bn under these representations are finite…

### Hecke algebra representations of braid groups and link polynomials

- Mathematics
- 1987

By studying representations of the braid group satisfying a certain quadratic relation we obtain a polynomial invariant in two variables for oriented links. It is expressed using a trace, discovered…

### Topological Quantum Computation

- PhysicsQCQC
- 1998

The connection between fault-tolerant quantum computation and nonabelian quantum statistics in two spatial dimensions is explored and it is shown that if information is encoded in pairs of quasiparticles, then the Aharonov-Bohm interactions can be adequate for universal fault-Tolerance quantum computation.

### Simulation of Topological Field Theories¶by Quantum Computers

- Physics
- 2002

Abstract: Quantum computers will work by evolving a high tensor power of a small (e.g. two) dimensional Hilbert space by local gates, which can be implemented by applying a local Hamiltonian H for a…

### Asymptotically Optimal Topological Quantum Compiling

- MathematicsPhysical review letters
- 2014

The problem of compiling quantum operations into braid representations for non-Abelian quasiparticles described by the Fibonacci anyon model is addressed and a probabilistically polynomial algorithm is developed that approximates any given single-qubit unitary to a desired precision by an asymptotically depth-optimal braid pattern.