Local Exclusion and Lieb–Thirring Inequalities for Intermediate and Fractional Statistics
@article{Lundholm2013LocalEA, title={Local Exclusion and Lieb–Thirring Inequalities for Intermediate and Fractional Statistics}, author={Douglas Lundholm and Jan Philip Solovej}, journal={Annales Henri Poincar{\'e}}, year={2013}, volume={15}, pages={1061-1107} }
In one and two spatial dimensions there is a logical possibility for identical quantum particles different from bosons and fermions, obeying intermediate or fractional (anyon) statistics. We consider applications of a recent Lieb–Thirring inequality for anyons in two dimensions, and derive new Lieb–Thirring inequalities for intermediate statistics in one dimension with implications for models of Lieb–Liniger and Calogero–Sutherland type. These inequalities follow from a local form of the…
33 Citations
Local exclusion principle for identical particles obeying intermediate and fractional statistics
- Mathematics
- 2013
A local exclusion principle is observed for identical particles obeying intermediate and fractional exchange statistics in one and two dimensions, leading to bounds for the kinetic energy in terms of…
Hardy and Lieb-Thirring Inequalities for Anyons
- Mathematics
- 2013
We consider the many-particle quantum mechanics of anyons, i.e. identical particles in two space dimensions with a continuous statistics parameter $${\alpha \in [0, 1]}$$α∈[0,1] ranging from bosons…
The Lieb–Thirring Inequality for Interacting Systems in Strong-Coupling Limit
- Mathematics
- 2020
We consider an analogue of the Lieb-Thirring inequality for quantum systems with homogeneous repulsive interaction potentials, but without the antisymmetry assumption on the wave functions. We show…
Fractional Hardy–Lieb–Thirring and Related Inequalities for Interacting Systems
- Mathematics
- 2015
We prove analogues of the Lieb–Thirring and Hardy–Lieb–Thirring inequalities for many-body quantum systems with fractional kinetic operators and homogeneous interaction potentials, where no…
Exclusion Bounds for Extended Anyons
- Mathematics
- 2016
We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent.…
Semiclassical Limit for Almost Fermionic Anyons
- PhysicsCommunications in Mathematical Physics
- 2021
In two-dimensional space there are possibilities for quantum statistics continuously interpolating between the bosonic and the fermionic one. Quasi-particles obeying such statistics can be described…
Fermionic behavior of ideal anyons
- PhysicsLetters in mathematical physics
- 2018
Upper and lower bounds on the ground-state energy of the ideal two-dimensional anyon gas are proved and the lower bounds extend to Lieb–Thirring inequalities for all anyons except bosons.
Lieb-Thirring Bounds for Interacting Bose Gases∗
- Physics
- 2014
We study interacting Bose gases and prove lower bounds for the kinetic plus interaction energy of a many-body wave function in terms of its particle density. These general estimates are then applied…
Approaching off-diagonal long-range order for
1+1
-dimensional relativistic anyons
- Physics
- 2021
We construct and study relativistic anyons in $1+1$ dimensions generalizing well-known models of Dirac fermions. First, a model of free anyons is constructed and then extended in two ways: (i) by…
References
SHOWING 1-10 OF 68 REFERENCES
Local exclusion principle for identical particles obeying intermediate and fractional statistics
- Mathematics
- 2013
A local exclusion principle is observed for identical particles obeying intermediate and fractional exchange statistics in one and two dimensions, leading to bounds for the kinetic energy in terms of…
Hardy and Lieb-Thirring Inequalities for Anyons
- Mathematics
- 2013
We consider the many-particle quantum mechanics of anyons, i.e. identical particles in two space dimensions with a continuous statistics parameter $${\alpha \in [0, 1]}$$α∈[0,1] ranging from bosons…
Anyons and lowest Landau level Anyons
- Physics
- 2007
Intermediate statistics interpolating from Bose statistics to Fermi statistics are allowed in two dimensions. This is due to the particular topology of the two dimensional configuration space of…
Thomas-Fermi Method for Particles Obeying Generalized Exclusion Statistics.
- PhysicsPhysical review letters
- 1995
The Thomas-Fermi method is used to examine the thermodynamics of particles obeying Haldane exclusion statistics and obtains the exact one-particle spatial density and a closed form for the equation of state at finite temperature, which are both new results.
STATISTICS IN ONE DIMENSION
- Mathematics
- 1991
We show that there are novel generalizations of statistics for identical particles in one dimension. These arise due to possible boundary conditions on wave functions, or equivalently due to…
Statistics in Space Dimension Two
- Mathematics
- 1997
We construct as a selfadjoint operator the Schrödinger Hamiltonian for a system of N identical particles on a plane, obeying the statistics defined by a representation π1 of the braid group. We use…
Fractional statistics and anyon superconductivity
- Physics
- 1990
The occurrence of fractional statistics has been discovered in more and more quantum field theory models, including some of the most geometrical and canonical ones. In a remarkable case, the…