Local Complete Intersections in P 2 and Koszul Syzygies

@inproceedings{CoxLocalCI,
  title={Local Complete Intersections in P 2 and Koszul Syzygies},
  author={David Cox and Hal Schenck}
}
We study the syzygies of a codimension two ideal I = f 1 , f 2 , f 3 ⊆ k[x, y, z]. Our main result is that the module of syzygies vanishing (scheme-theoretically) at the zero locus Z = V(I) is generated by the Koszul syzygies iff Z is a local complete intersection. The proof uses a characterization of complete intersections due to Herzog [4]. When I is saturated, we relate our theorem to results of Weyman [7] and Simis and Vasconcelos [6]. We conclude with an example of how our theorem fails… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-8 of 8 references

Equations of parametric curves and surfaces via syzygies

  • D Cox
  • Contemporary Mathematics
  • 2001

Commutative Algebra with a view towards Algebraic Geometry

  • D Eisenbud
  • Commutative Algebra with a view towards Algebraic…
  • 1995

The syzygies of the conormal module

  • A Simis, W Vasconcelos
  • Am. J. Math
  • 1981

Resolutions of the Exterior and Symmetric Powers of a Module

  • J Weyman
  • J. Algebra
  • 1979

Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konormalenmodul und den Differentialmodul

  • J Herzog
  • Math. Z
  • 1978

E-mail address: schenck@math.tamu.edu

  • E-mail address: schenck@math.tamu.edu

Similar Papers

Loading similar papers…