Lipschitz functions on the infinite-dimensional torus

@inproceedings{Faifman2014LipschitzFO,
  title={Lipschitz functions on the infinite-dimensional torus},
  author={Dmitry Faifman and Bo'az Klartag},
  year={2014}
}
We discuss the spectrum phenomenon for Lipschitz functions on the infinite-dimensional torus. Suppose that $f$ is a measurable, real-valued, Lipschitz function on the torus $\mathbb{T}^{\infty}$. We prove that there exists a number $a \in \mathbb R$ with the following property: For any $\epsilon > 0$ there exists a parallel, infinite-dimensional subtorus $M \subseteq \mathbb T^{\infty}$ such that the restriction of the function $f-a$ to the subtorus $M$ has an $L^{\infty}(M)$-norm of at most… CONTINUE READING
1
Twitter Mention

References

Publications referenced by this paper.
SHOWING 1-8 OF 8 REFERENCES

The Probabilistic Method, Third Edition

  • Wiley-Interscience series in discrete mathematics and optimization
  • 2008
VIEW 1 EXCERPT

The distortion of Hilbert space

E. Odell, Schlumprecht, Th
  • Geom. Funct. Anal. (GAFA),
  • 1993
VIEW 1 EXCERPT

Spaces and questions . GAFA 2000 ( Tel Aviv , 1999 )

M. Gromov
  • 1992