Liouvillian Skin Effect: Slowing Down of Relaxation Processes without Gap Closing.

  title={Liouvillian Skin Effect: Slowing Down of Relaxation Processes without Gap Closing.},
  author={Taiki Haga and Masaya Nakagawa and Ryusuke Hamazaki and Masahito Ueda},
  journal={Physical review letters},
  volume={127 7},
It is highly nontrivial to what extent we can deduce the relaxation behavior of a quantum dissipative system from the spectral gap of the Liouvillian that governs the time evolution of the density matrix. We investigate the relaxation processes of a quantum dissipative system that exhibits the Liouvillian skin effect, which means that the eigenmodes of the Liouvillian are localized exponentially close to the boundary of the system, and find that the timescale for the system to reach a steady… 

Figures from this paper

Resolving a Discrepancy between Liouvillian Gap and Relaxation Time in Boundary-Dissipated Quantum Many-Body Systems.

It is shown that the relaxation time due to diffusive transports in a boundary dissipated many-body quantum system is determined not by the gap or low-lying eigenvalues of the Liouvillian but by superexponentially large expansion coefficients for LiouVillian eigenvectors with nonsmall eigen values at an initial state.

Point-gap topology with complete bulk-boundary correspondence in dissipative quantum systems

The spectral and dynamical properties of dissipative quantum systems, as modeled by a damped oscillator in the Fock space, are investigated from a topological point of view. Unlike a physical lattice

Non-Hermitian bulk-boundary correspondence in a periodically driven system

Bulk-boundary correspondence, connecting the bulk topology and the edge states, is an essential principle of the topological phases. However, the bulk-boundary correspondence is broken down in

Topology by Dissipation: Majorana Bosons in Metastable Quadratic Markovian Dynamics.

It is argued that Majorana bosons are robust against disorder and identifiable by signatures in the zero-frequency steady-state power spectrum, and suggested that symmetry-protected topological phases for free bosons may arise in transient metastable regimes, which persist over practical timescales.

Spectral deformations in non-Hermitian lattices with disorder and skin effect: A solvable model

We derive analytical results on energy spectral phase transitions and deformations in the simplest model of one-dimensional lattice displaying the non-Hermitian skin effect, namely the Hatano-Nelson

Universal characteristics of one-dimensional non-Hermitian superconductors

We establish a non-Bloch band theory for one-dimensional(1D) non-Hermitian topological superconductors. The universal physical properties of non-Hermitian topological superconductors are revealed

Liouvillian skin effect in an exactly solvable model

The interplay between dissipation, topology and sensitivity to boundary conditions has recently attracted tremendous amounts of attention at the level of effective non-Hermitian descriptions. Here we

$\mathbb{Z}_2$ Non-Hermitian skin effect in equilibrium heavy-fermions

We demonstrate that a correlated equilibrium $f$-electron system with time-reversal symmetry can exhibit a $\mathbb{Z}_2$ non-Hermitian skin effect of quasi-particles. In particular, we analyze a

Two-step relaxation in local many-body Floquet systems

We want to understand how relaxation process from an initial non-generic state proceeds towards a long-time typical state reached under unitary quantum evolution. One would expect that after some



Relaxation times of dissipative many-body quantum systems.

  • M. Znidaric
  • Physics
    Physical review. E, Statistical, nonlinear, and soft matter physics
  • 2015
We study relaxation times, also called mixing times, of quantum many-body systems described by a Lindblad master equation. We in particular study the scaling of the spectral gap with the system

Nonequilibrium phase diagram of a driven and dissipative many-body system

We study the nonequilibrium dynamics of a many-body bosonic system on a lattice, subject to driving and dissipation. The time evolution is described by a master equation, which we treat within a

Algebraic versus Exponential Decoherence in Dissipative Many-Particle Systems.

Investigation of spin-1/2 chains with uniform local couplings to a Markovian environment using the time-dependent density matrix renormalization group finds that the decoherence time diverges in the thermodynamic limit, and the coherence decay is then algebraic instead of exponential.

Spectral theory of Liouvillians for dissipative phase transitions

A state of an open quantum system is described by a density matrix, whose dynamics is governed by a Liouvillian superoperator. Within a general framework, we explore fundamental properties of both

Dynamical and steady-state properties of a Bose-Hubbard chain with bond dissipation: A study based on matrix product operators

We study a dissipative Bose-Hubbard chain subject to an engineered bath using a superoperator approach based on matrix product operators. The dissipation is engineered to stabilize a BEC condensate

Critical exponents of steady-state phase transitions in fermionic lattice models

We discuss reservoir induced phase transitions of lattice fermions in the non-equilibrium steady state (NESS) of an open system with local reservoirs. These systems may become critical in the sense

Nonequilibrium dynamics of bosonic atoms in optical lattices: Decoherence of many-body states due to spontaneous emission

We analyze in detail the heating of bosonic atoms in an optical lattice due to incoherent scattering of light from the lasers forming the lattice. Because atoms scattered into higher bands do not

Crossover between ballistic and diffusive transport: the quantum exclusion process

We study the evolution of a system of free fermions in one dimension under the simultaneous effects of coherent tunneling and stochastic Markovian noise. We identify a class of noise terms where a

Non-Hermitian Skin Effect and Chiral Damping in Open Quantum Systems.

It is shown that the non-Hermitian skin effect dramatically shapes the long-time dynamics, such that the damping in a class of open quantum systems is algebraic under periodic boundary conditions but exponential under open boundary conditions.

Higher-order non-Hermitian skin effect

The non-Hermitian skin effect is a unique feature of non-Hermitian systems, in which an extensive number of boundary modes appear under the open boundary conditions. Here, we discover higher-order