Linear codes with complementary duals meet the Gilbert-Varshamov bound

@article{Sendrier2004LinearCW,
  title={Linear codes with complementary duals meet the Gilbert-Varshamov bound},
  author={N. Sendrier},
  journal={International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.},
  year={2004},
  pages={456-}
}
  • N. Sendrier
  • Published 2004
  • Mathematics, Computer Science
  • International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.
  • Using the hull dimension spectra of linear codes, we show that linear codes with complementary dual meet the asymptotic Gilbert-Varshamov bound. 
    86 Citations

    Topics from this paper

    On complementary dual additive cyclic codes
    • 1
    Matrix-Product Complementary dual Codes
    • 18
    • PDF
    Algebraic Geometry Codes With Complementary Duals Exceed the Asymptotic Gilbert-Varshamov Bound
    • Lingfei Jin, C. Xing
    • Mathematics, Computer Science
    • IEEE Transactions on Information Theory
    • 2018
    • 8
    • PDF
    Quasi-Cyclic Complementary Dual Code
    • 2
    • Highly Influenced
    Quasi-cyclic complementary dual codes
    • 64
    • PDF
    On MDS linear complementary dual codes and entanglement-assisted quantum codes
    • 42
    Binary linear complementary dual codes
    • 13
    • PDF
    Constructions of optimal LCD codes over large finite fields
    • 24
    • PDF
    Enumeration of complementary-dual cyclic Fq-linear Fqt-codes
    • 2

    References

    SHOWING 1-8 OF 8 REFERENCES
    Linear codes with complementary duals
    • J. Massey
    • Mathematics, Computer Science
    • Discret. Math.
    • 1992
    • 215
    • PDF
    The Theory of Error-Correcting Codes
    • 7,175
    • PDF
    On the Dimension of the Hull
    • N. Sendrier
    • Mathematics, Computer Science
    • SIAM J. Discret. Math.
    • 1997
    • 64
    • PDF
    Affine and projective planes
    • 36
    • PDF
    Key, AIne and projective planes
    • Discrete Math
    • 1990
    Complexity Issues in Coding Theory
    • A. Barg
    • Mathematics, Computer Science
    • Electron. Colloquium Comput. Complex.
    • 1997
    • 119
    Linear codes with complementary duals, Discrete Math
    • Linear codes with complementary duals, Discrete Math
    • 1992
    AAne and projective planes, Discrete Math
    • AAne and projective planes, Discrete Math
    • 1990