# Linear and nonlinear optical absorption of position-dependent mass oscillators

@article{Nascimento2020LinearAN, title={Linear and nonlinear optical absorption of position-dependent mass oscillators}, author={Jo{\~a}o P. G. Nascimento and Ilde Guedes}, journal={arXiv: Optics}, year={2020} }

We study the linear $(\alpha^{(1)} )$, nonlinear $(\alpha^{(3)})$ and total $(\alpha)$ optical absorptions of position-dependent mass oscillators (PDMOs). We consider three mass distributions $(m(x,\lambda))$ used to describe semiconducting structures; $\lambda$ is a deformation parameter. In the limit $\lambda\rightarrow 0$, the three systems describe electrons in a parabolic quantum well. For the system $m_1(x)=m_0/[1+(\lambda x)^2 ]^2$ we observe that $\alpha^{(1)}(\omega)) (\alpha^{(3β¦Β Expand

#### References

SHOWING 1-10 OF 21 REFERENCES

Opt

- 2017

Many graphics and vision problems can be expressed as non-linear least squares optimizations of objective functions over visual data, such as images and meshes. The mathematical descriptions of theseβ¦ Expand

Physica B 406

- 3911
- 2011

Physica E Low Dimens

- Syst. Nanostruct. 115, 113707
- 2020

AIP Conference Proceedings 2115

- 030470
- 2019

Materials 12

- 78
- 2019

Phys

- 125, 185702
- 2019

Physica E Low Dimens

- Syst. Nanostruct. 108, 238
- 2019

S

- Panda , and B. K. Panda, AIP Conference Proceedings 2115, 030471
- 2019

Soc

- Am. B 36, 837
- 2019