# Linear-Time Approximation for Maximum Weight Matching

@article{Duan2014LinearTimeAF,
title={Linear-Time Approximation for Maximum Weight Matching},
author={Ran Duan and Seth Pettie},
journal={J. ACM},
year={2014},
volume={61},
pages={1:1-1:23}
}
• Published 2014
• Mathematics, Computer Science
• J. ACM
The <i>maximum cardinality</i> and <i>maximum weight matching</i> problems can be solved in <i>Õ</i>(<i>m</i>√<i>n</i>) time, a bound that has resisted improvement despite decades of research. (Here <i>m</i> and <i>n</i> are the number of edges and vertices.) In this article, we demonstrate that this “<i>m</i>√<i>n</i> barrier” can be bypassed by approximation. For any <i>ε</i> > 0, we give an algorithm that computes a (1 − <i>ε</i>)-approximate maximum weight matching in <i>O</i>(<i>mε</i><sup… Expand
181 Citations
Fine-Grained Algorithm Design for Matching
• Mathematics, Computer Science
• ArXiv
• 2016
The first linear-time algorithm for maximum matching on cocomparability graphs is developed, based on the recently discovered Lexicographic Depth First Search (LDFS), and a deeper and systematic study of various "distance to triviality"-parameters for the maximum matching problem is started. Expand
Faster Fully Dynamic Matchings with Small Approximation Ratios
• Mathematics, Computer Science
• SODA
• 2016
A fully dynamic deterministic algorithm that maintains a (3/2 + e)-approximation in amortized update time O(m1/4e--2.5) and manages to be polynomially faster than all existing deterministic algorithms, while still maintaining a better-than-2 approximation. Expand
A 2/3-Approximation Algorithm for Vertex-weighted Matching
• Mathematics
• 2019
We consider the maximum vertex-weighted matching problem (MVM) for non-bipartite graphs. In earlier work we have described a 2/3-approximation algorithm for the MVM on bipartite graphs (Dobrian,Expand
Bipartite Matching in Nearly-linear Time on Moderately Dense Graphs
• J. V. D. Brand, +5 authors Di Wang
• Computer Science, Mathematics
• 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS)
• 2020
A simple sublinear-time algorithm for detecting and sampling high-energy edges in electric flows on expanders and show that when combined with recent advances in dynamic expander decompositions, this yields efficient data structures for maintaining the iterates of both [v.d.Brand-Lee-Sidford-Song 2020] and the authors' new IPMs. Expand
The Sparse Awakens: Streaming Algorithms for Matching Size Estimation in Sparse Graphs
• Computer Science, Mathematics
• ESA
• 2017
Improved streaming algorithms for approximating the size of maximum matching with sparse (bounded arboricity) graphs and the first with an approximation guarantee independent of d are presented. Expand
Dynamic (1 + ∊)-Approximate Matchings: A Density-Sensitive Approach
• Computer Science, Mathematics
• SODA
• 2016
This paper maintains fully dynamic (1 + e)-approximate MCM with worst-case update time O(α ·e--2) for graphs with arboricity1 bounded by α, and provides local algorithms of independent interest for maintaining fully dynamic approximate matching and vertex cover. Expand
A Simpler Scaling Algorithm for Weighted Matching in General Graphs
• Ran Duan
• Mathematics, Computer Science
• ArXiv
• 2014
We present a new scaling approach for the maximum weight perfect matching problem in general graphs, with running time O((m + n log n) √ n log(nN)), where n,m,N denote the number of vertices, numberExpand
Maintaining Approximate Maximum Matching in an Incremental Bipartite Graph in Polylogarithmic Update Time
It is shown that one can find matching sparsifier even in an incremental bipartite graph in O(log^2(n) / (epsilon^{4}) update time. Expand
Fully Dynamic Matching in Bipartite Graphs
• Mathematics, Computer Science
• ICALP
• 2015
Two fully dynamic algorithms for maximum cardinality matching in bipartite graphs are presented, including a deterministic algorithm that maintains a $$(3/2 + \epsilon )$$ approximation in worst-case update time and a polynomially faster algorithm that is faster than all previous deterministic algorithms for any constant approximation. Expand
Beating the Folklore Algorithm for Dynamic Matching
• Computer Science
• ArXiv
• 2021
This work presents the first deterministic algorithm which outperforms the folklore algorithm in terms of both approximation ratio and worst-case update time, and gives a (2−Ω(1))-approximate algorithm with O( √ n 8 √ m) = O(n) worst- case update time in n-node, m-edge graphs. Expand