# Limitations of Noisy Reversible Computation

@article{Aharonov1996LimitationsON, title={Limitations of Noisy Reversible Computation}, author={Dorit Aharonov and Michael Ben-Or and Russell Impagliazzo and Noam Nisan}, journal={arXiv: Quantum Physics}, year={1996} }

Noisy computation and reversible computation have been studied separately, and it is known that they are as powerful as unrestricted computation. We study the case where both noise and reversibility are combined and show that the combined model is weaker than unrestricted computation. In our noisy reversible circuits, each wire is flipped with probability p each time step, and all the inputs to the circuit are present in time 0. We prove that any noisy reversible circuit must have size…

## 56 Citations

Fault-Tolerant Quantum Computation with Constant Error Rate

- Computer Science, PhysicsSIAM J. Comput.
- 2008

This paper provides a self-contained and complete proof of universal fault-tolerant quantum computation in the presence of local noise, and shows that local noise is in principle not an obstacle for scalable quantum computation.

Fault-tolerant quantum computation with constant error

- Mathematics, Computer ScienceSTOC '97
- 1997

This paper shows how to perform fault tolerant quantum computation when the error probability, q, is smaller than some constant threshold, q.. the cost is polylogarithmic in time and space, and no measurements are used during the quantum computation.

Tight bounds on the convergence of noisy random circuits to uniform

- Physics
- 2021

We study the properties of output distributions of noisy, random circuits. We obtain upper and lower bounds on the expected distance of the output distribution from the uniform distribution. These…

Random quantum circuits transform local noise into global white noise

- Physics
- 2021

We study the distribution over measurement outcomes of noisy random quantum circuits in the low-fidelity regime. We show that, for local noise that is sufficiently weak and unital, correlations…

Quantum Computation Input ||> Computation ||> Output

- 1998

In the last few years, theoretical study of quantum systems serving as computational devices has achieved tremendous progress. We now have strong theoretical evidence that quantum computers, if…

Quantum Computation and Isomorphism Testing

- Mathematics
- 2015

In this thesis, we study quantum computation and algorithms for isomorphism problems. Some of the problems that we cover are fundamentally quantum and therefore require quantum techniques. For other…

An upper bound on the threshold quantum decoherence rate

- Physics, MathematicsQuantum Inf. Comput.
- 2004

It is shown that if the decohereace rate η is greater than 1/2, then the authors can not even store a single qubit for more than logarithmic time.

Optimal Quantum Circuits for Nearest-Neighbor Architectures

- Mathematics, Computer ScienceTQC
- 2013

This work shows that the depth of quantum circuits in the realistic architecture where a classical controller determines which local interactions to apply on the kD grid Z^k is the same (up to a constant factor) as in the standard model where arbitrary interactions are allowed, and justifies the standard assumption that interactions can be performed between arbitrary pairs of qubits.

Reversible fault-tolerant logic

- Computer Science, Mathematics2005 International Conference on Dependable Systems and Networks (DSN'05)
- 2005

This paper provides efficient fault-tolerant circuits when restricted to both 2D and 1D and compute bounds on the entropy (and hence, heat) generated by the FT circuits and provides quantitative estimates on how large can the authors make their circuits before they lose any advantage over irreversible computing.

The Complexity of Noise: A Philosophical Outlook on Quantum Error Correction

- Computer ScienceThe Complexity of Noise
- 2010

Making this debate on the physical possibility of large scale quantum computers invites philosophical scrutiny more precise by suggesting a novel statistical mechanical perspective thereof is the goal of this project.

## References

SHOWING 1-10 OF 15 REFERENCES

Time/Space Trade-Offs for Reversible Computation

- Mathematics, Computer ScienceSIAM J. Comput.
- 1989

Using a pebbling argument, this paper shows that, for any $\varepsilon > 0$, ordinary multitape Turing machines using time T and space S can be simulated by reversible ones using time $O(T^{1 + \varpsilon } )$ and space $O (S\log T)$ or in linear time and space$O(ST^\varePSilon )$.

Quantum complexity theory

- Computer ScienceSTOC '93
- 1993

This dissertation proves that relative to an oracle chosen uniformly at random, the class NP cannot be solved on a quantum Turing machine in time $o(2\sp{n/2}).$ and gives evidence suggesting that quantum Turing Machines cannot efficiently solve all of NP.

Logical reversibility of computation

- Computer Science
- 1973

This result makes plausible the existence of thermodynamically reversible computers which could perform useful computations at useful speed while dissipating considerably less than kT of energy per logical step.

Quantum Circuit Complexity

- Mathematics, Computer ScienceFOCS
- 1993

It is shown that any function computable in polynomial time by a quantum Turing machine has aPolynomial-size quantum circuit, and this result enables us to construct a universal quantum computer which can simulate a broader class of quantum machines than that considered by E. Bernstein and U. Vazirani (1993), thus answering an open question raised by them.

Two-bit gates are universal for quantum computation.

- Physics, MedicinePhysical review. A, Atomic, molecular, and optical physics
- 1995

A proof is given, which relies on the commutator algebra of the unitary Lie groups, that quantum gates operating on just two bits at a time are sufficient to construct a general quantum circuit. The…

Threshold Accuracy for Quantum Computation

- Mathematics, Physics
- 1996

We have previously (quant-ph/9608012) shown that for quantum memories and quantum communication, a state can be transmitted over arbitrary distances with error $\epsilon$ provided each gate has error…

The thermodynamics of computation—a review

- Physics
- 1982

Computers may be thought of as engines for transforming free energy into waste heat and mathematical work. Existing electronic computers dissipate energy vastly in excess of the mean thermal…

Probabilistic Logic and the Synthesis of Reliable Organisms from Unreliable Components

- Computer Science
- 1956

The paper that follows is based on notes taken by Dr. R. S. Pierce on five lectures given by the author at the California Institute of Technology in January 1952, and it is the author's conviction that error should be treated by thermodynamic methods, and be the subject of a thermodynamical theory.

Fault tolerant computation with constant error

- Fault tolerant computation with constant error
- 1996