Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis.


Lifestyle modulates brain function. Diet, stress levels, and physical exercise among other factors influence the "brain cognitive reserve", that is, the capacity of the brain to maintain a normal function when confronting neurodegenerative diseases, injury, and/or aging. This cognitive reserve relays on several cellular and molecular elements that contribute to brain plasticity allowing adaptive responses to cognitive demands, and one of its key components is the hippocampal neurogenic reserve. Hippocampal neural stem cells give rise to new neurons that integrate into the local circuitry and contribute to hippocampal functions such as memory and learning. Importantly, adult hippocampal neurogenesis is well-known to be modulated by the demands of the environment and lifestyle factors. Diet, stress, and physical exercise directly act on neural stem cells and/or their progeny, but, in addition, they may also indirectly affect neurogenesis by acting on microglia. Microglia, the guardians of the brain, rapidly sense changes in the brain milieu, and it has been recently shown that their function is affected by lifestyle factors. However, few studies have analyzed the modulatory effect of microglia on adult neurogenesis in these conditions. Here, we review the current knowledge about the dialogue maintained between microglia and the hippocampal neurogenic cascade. Understanding how the communication between microglia and hippocampal neurogenesis is affected by lifestyle choices is crucial to maintain the brain cognitive reserve and prevent the maladaptive responses that emerge during disease or injury through adulthood and aging.

DOI: 10.1021/acschemneuro.6b00009
Citations per Year

Citation Velocity: 8

Averaging 8 citations per year over the last 2 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@article{Valero2016LifestyleST, title={Lifestyle Shapes the Dialogue between Environment, Microglia, and Adult Neurogenesis.}, author={Jorge Valero and I{\~n}aki Paris and Amanda Sierra}, journal={ACS chemical neuroscience}, year={2016}, volume={7 4}, pages={442-53} }