# Lie groupoids of mappings taking values in a Lie groupoid

@article{Amiri2018LieGO, title={Lie groupoids of mappings taking values in a Lie groupoid}, author={H. Amiri and Helge Glockner and Alexander Schmeding}, journal={arXiv: Differential Geometry}, year={2018} }

Endowing differentiable functions from a compact manifold to a Lie group with the pointwise group operations one obtains the so-called current groups and, as a special case, loop groups. These are prime examples of infinite-dimensional Lie groups modelled on locally convex spaces. In the present paper, we generalise this construction and show that differentiable mappings on a compact manifold (possibly with boundary) with values in a Lie groupoid form infinite-dimensional Lie groupoids which we… Expand

#### 7 Citations

Direct limits of regular Lie groups

- Mathematics
- 2019

Let G be a regular Lie group which is a directed union of regular Lie groups G_i (all modelled on possibly infinite-dimensional, locally convex spaces). We show that G is the direct limit of the G_i… Expand

Lie Theory for Asymptotic Symmetries in General Relativity: The BMS Group

- Physics, Mathematics
- 2021

We study the Lie group structure of asymptotic symmetry groups in General Relativity from the viewpoint of infinite-dimensional geometry. To this end, we review the geometric definition of asymptotic… Expand

Manifolds of mappings on cartesian products

- Mathematics
- 2021

Given smooth manifolds M1, . . . ,Mn (which may have a boundary or corners), a smooth manifold N modeled on locally convex spaces and α ∈ (N0 ∪ {∞}) , we consider the set C(M1 × · · · ×Mn, N) of all… Expand

Lie groups of real analytic diffeomorphisms are $L^1$-regular

- Mathematics
- 2020

Let $M$ be a compact, real analytic manifold and $G$ be the Lie group of all real-analytic diffeomorphisms of $M$, which is modelled on the (DFS)-space ${\mathfrak g}$ of real-analytic vector fields… Expand

Smoothing operators for vector-valued functions and extension operators

- Mathematics
- 2020

For suitable finite-dimensional smooth manifolds M (possibly with various kinds of boundary or corners), locally convex topological vector spaces F and non-negative integers k, we construct… Expand

Smooth approximations and their applications to homotopy types

- Mathematics
- 2020

Let $M, N$ the be smooth manifolds, $\mathcal{C}^{r}(M,N)$ the space of ${C}^{r}$ maps endowed with weak $C^{r}$ Whitney topology, and $\mathcal{B} \subset \mathcal{C}^{r}(M,N)$ an open subset. It is… Expand

Incompressible Euler equations with stochastic forcing: a geometric approach

- Mathematics
- 2019

We consider stochastic versions of Euler--Arnold equations using the infinite-dimensional geometric approach as pioneered by Ebin and Marsden. For the Euler equation on a compact manifold (possibly… Expand

#### References

SHOWING 1-10 OF 67 REFERENCES

A differentiable monoid of smooth maps on Lie groupoids

- Mathematics
- 2017

In this article we investigate a monoid of smooth mappings on the space of arrows of a Lie groupoid and its group of units. The group of units turns out to be an infinite-dimensional Lie group which… Expand

Linking Lie groupoid representations and representations of infinite-dimensional Lie groups

- Mathematics
- 2018

The present paper links the representation theory of Lie groupoids and infinite-dimensional Lie groups. We show that smooth representations of Lie groupoids give rise to smooth representations of… Expand

Towards a Lie theory of locally convex groups

- Mathematics
- 2006

Abstract.In this survey, we report on the state of the art of some of the fundamental problems in the Lie theory of Lie groups modeled on locally convex spaces, such as integrability of Lie algebras,… Expand

Lie group structures on groups of smooth and holomorphic maps on non-compact manifolds

- Mathematics
- 2008

We study Lie group structures on groups of the form C∞(M, K), where M is a non-compact smooth manifold and K is a, possibly infinite-dimensional, Lie group. First we prove that there is at most one… Expand

Lie Group Structures on Quotient Groups and Universal Complexifications for Infinite-Dimensional Lie Groups

- Mathematics
- 2001

We characterize the existence of Lie group structures on quotient groups and the existence of universal complexifications for the class of Baker–Campbell–Hausdorff (BCH–) Lie groups, which subsumes… Expand

Re)constructing Lie groupoids from their bisections and applications to prequantisation

- Mathematics
- 2015

This paper is about the relation of the geometry of Lie groupoids over a fixed compact manifold and the geometry of their (infinite-dimensional) bisection Lie groups. In the first part of the paper… Expand

Complexifications of infinite-dimensional manifolds and new constructions of infinite-dimensional Lie groups

- Mathematics
- 2014

Let M be a real analytic manifold modeled on a locally convex space and K be a non-empty compact subset of M. We show that if an open neighborhood of K in M admits a complexification which is a… Expand

Introduction to Foliations and Lie Groupoids

- Mathematics
- 2003

This book gives a quick introduction to the theory of foliations, Lie groupoids and Lie algebroids. An important feature is the emphasis on the interplay between these concepts: Lie groupoids form an… Expand

The Lie group of bisections of a Lie groupoid

- Mathematics
- 2014

In this article, we endow the group of bisections of a Lie groupoid with compact base with a natural locally convex Lie group structure. Moreover, we develop thoroughly the connection to the algebra… Expand

Regularity properties of infinite-dimensional Lie groups, and semiregularity

- Mathematics
- 2012

Let G be a Lie group modelled on a locally convex space, with Lie algebra g, and k be a non-negative integer or infinity. We say that G is C^k-semiregular if each C^k-curve c in g admits a left… Expand