Corpus ID: 117088507

Level Aspect Subconvexity For Rankin-Selberg $L$-functions

@article{Holowinsky2012LevelAS,
  title={Level Aspect Subconvexity For Rankin-Selberg \$L\$-functions},
  author={R. Holowinsky and R. Munshi},
  journal={arXiv: Number Theory},
  year={2012}
}
  • R. Holowinsky, R. Munshi
  • Published 2012
  • Mathematics
  • arXiv: Number Theory
  • Let $M$ be a square-free integer and let $P$ be a prime not dividing $M$ such that $P \sim M^\eta$ with $0<\eta<2/21$. We prove subconvexity bounds for $L(\tfrac{1}{2}, f \otimes g)$ when $f$ and $g$ are two primitive holomorphic cusp forms of levels $P$ and $M$. These bounds are achieved through an unamplified second moment method. 
    19 Citations

    References

    SHOWING 1-10 OF 30 REFERENCES
    Real zeros and size of Rankin-Selberg $L$-functions in the level aspect
    • 11
    • PDF
    The subconvexity problem for Rankin–Selberg L-functions and equidistribution of Heegner points. II
    • 122
    • Highly Influential
    • PDF
    Weak subconvexity for central values of $L$-functions
    • 45
    • Highly Influential
    • PDF
    Stable averages of central values of Rankin–Selberg L-functions: Some new variants
    • 19
    • PDF
    Low lying zeros of families of L-functions
    • 351
    • PDF
    Shifted convolution sums and subconvexity bounds for automorphic L-functions
    • 56
    • PDF
    The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points
    • 181
    • Highly Influential
    • PDF
    Estimates for Rankin–Selberg L-Functions and Quantum Unique Ergodicity
    • 141
    • PDF
    Averages of central L-values of Hilbert modular forms with an application to subconvexity
    • 31
    • PDF