Leonard Euler : addition theorems and superintegrable systems

  title={Leonard Euler : addition theorems and superintegrable systems},
  author={A V Tsiganov},
  • A V Tsiganov
  • Published 2008
We consider the Euler approach to construction and to investigation of the superintegrable systems related to the addition theorems. As an example we reconstruct Drach systems and get some new two-dimensional superintegrable Stäckel systems. PACS numbers: 02.30.Jr, 02.30.Ik, 03.65.Fd Mathematics Subject Classification: 70H06, 70H20, 35Q72 

From This Paper

Topics from this paper.


Publications referenced by this paper.
Showing 1-10 of 19 references

Institutiones Calculi integralis

  • L. Euler
  • Ac.Sc. Petropoli, 1761,
  • 1956
Highly Influential
4 Excerpts

Sur l’intégration logique des équations de la dynamique à deux variables: Forces conservatives

  • J. Drach
  • Intêgrales cubiques. Mouvements dans le plan…
  • 1935
Highly Influential
4 Excerpts

Superintegrable systems with third-order integrals of motion

  • I. Marquette, P. Winternitz
  • J. Phys. A: Math. Theor., v.41, 304031 (10pp)
  • 2008
1 Excerpt

Tsiganov, Symbolic software for separation of variables in the Hamilton- Jacobi equation for the L-systems

  • A. V. Yu.A. Grigoryev
  • Regular and Chaotic Dynamics, v.10(4),
  • 2005
1 Excerpt

Similar Papers

Loading similar papers…