Left-orderablity for surgeries on (−2,3,2s + 1)-pretzel knots

@inproceedings{Nie2018LeftorderablityFS,
  title={Left-orderablity for surgeries on (−2,3,2s + 1)-pretzel knots},
  author={Zipei Nie},
  year={2018}
}
Abstract In this paper, we prove that the fundamental group of the manifold obtained by Dehn surgery along a ( − 2 , 3 , 2 s + 1 ) -pretzel knot ( s ≥ 3 ) with slope p q is not left orderable if p q ≥ 2 s + 3 , and that it is left orderable if p q is in a neighborhood of zero depending on s. 
1
Twitter Mention

Citations

Publications citing this paper.

Taut Foliations, Positive 3-Braids, and the L-Space Conjecture

VIEW 2 EXCERPTS
CITES BACKGROUND
HIGHLY INFLUENCED

References

Publications referenced by this paper.
SHOWING 1-10 OF 19 REFERENCES

C

S. Boyer
  • Gordon and L. Watson. "On L-spaces and left-orderable fundamental groups." Mathematische Annalen 356.4
  • 2013
VIEW 4 EXCERPTS
HIGHLY INFLUENTIAL

Montesinos knots

K. L. Baker, A. H. Moore
  • Hopf plumbings, and L-space surgeries." J. Math. Soc. Japan. Vol. 70. No. 1.
  • 2018
VIEW 1 EXCERPT

Gonzaléz-Acuña. "On pretzel knots and Conjecture Z.

F.J.J. Rodríguez-Viorato
  • Journal of Knot Theory and Its Ramifications
  • 2016
VIEW 2 EXCERPTS