Left invariant Riemannian metrics with harmonic curvature are Ricci-parallel in solvable Lie groups and Lie groups of dimension ≤6
@article{Aberaouze2021LeftIR, title={Left invariant Riemannian metrics with harmonic curvature are Ricci-parallel in solvable Lie groups and Lie groups of dimension ≤6}, author={Ilyes Aberaouze and Mohamed Boucetta}, journal={Journal of Geometry and Physics}, year={2021} }
One Citation
Left-Invariant Einstein-like Metrics on Compact Lie Groups
- MathematicsMathematics
- 2022
In this paper, we study left-invariant Einstein-like metrics on the compact Lie group G. Assume that there exist two subgroups, H⊂K⊂G, such that G/K is a compact, connected, irreducible, symmetric…
References
SHOWING 1-10 OF 13 REFERENCES
Four-dimensional Einstein-like manifolds and curvature homogeneity
- Mathematics
- 1995
The aim of this paper is to classify 4-dimensional Einstein-like manifolds whose Ricci tensor has constant eigenvalues (this being a special kind of curvature homogeneity condition). We give a full…
Conformally flat Riemannian manifolds admitting a transitive group of isometries, II
- Mathematics
- 1975
1.Introduction. In the present paper, we shall classify conformally flat Riemannian manifolds admitting a transitive group of isometries. This class of manifolds contains the homogeneous Riemannian…
Classification of Certain Compact Riemannian Manifolds with Harmonic Curvature and Non-parallel Ricci Tensor
- Mathematics
- 1980
S being the Ricci tensor. While every manifold with parallel Ricci tensor has harmonic curvature, i.e., satisfies fiR=O, there are examples ([3], Theorem 5.2) of open Riemannian manifolds with fiR=O…
Ondes et radiations électromagnétiques et gravitationelles en relativité générale
- Mathematics
- 1960
RésuméThéorie des ondes et radiations gravitationelles basée sur l’analogie existant entre les comportements du tenseur de courbure et du tenseur champ électromagnétique en relativité générale.…
Einstein solvmanifolds are standard
- Mathematics
- 2007
We study Einstein manifolds admitting a transitive solvable Lie group of isometries (solvmanifolds). It is conjectured that these exhaust the class of noncompact homogeneous Einstein manifolds. J.…