Leaper graphs

@inproceedings{Knuth1994LeaperG,
  title={Leaper graphs},
  author={D. Knuth},
  year={1994}
}
  • D. Knuth
  • Published 1994
  • Mathematics
  • An {r, s}-leaper [1, p. 130; 2, p. 30; 3] is a generalized knight that can jump from (x, y) to (x±r, y±s) or (x ± s, y ± r) on a rectangular grid. The graph of an {r, s}-leaper on an m × n board is the set of mn vertices (x, y) for 0 ≤ x < m and 0 ≤ y < n, with an edge between vertices that are one {r, s}-leaper move apart. We call x the rank and y the file of board position (x, y). George P. Jelliss [4, 5] raised several interesting questions about these graphs, and established some of their… CONTINUE READING
    4 Citations
    Knight's Tours in Higher Dimensions
    Which Chessboards have a Closed Knight's Tour within the Rectangular Prism?
    • 15
    • PDF
    An effective implementation of the Lin-Kernighan traveling salesman heuristic
    • 1,198
    • PDF

    References

    SHOWING 1-10 OF 10 REFERENCES
    A guide to fairy chess
    • 9
    Brussels)
    • Brussels)
    • 1928
    Fairy Chess Review
    • Fairy Chess Review
    • 1945
    Generalized knights and Hamiltonian tours
    • Generalized knights and Hamiltonian tours
    • 1993
    Letter to the editor, The British Chess Magazine
    • Letter to the editor, The British Chess Magazine
    • 1918
    Solution d'une question curieuse qui ne paroit soumisè a aucune analyse
    • Mémoires de l'Academie Royale des Sciences et Belles Letters
    The five free leapers
    • The five free leapers
    • 1976
    Theory of leapers
    • Theory of leapers
    • 1985
    Traité des Applications de l'Analyse Mathématique au Jeu des Echecs
    • Traité des Applications de l'Analyse Mathématique au Jeu des Echecs