Las Vegas algorithms for linear and integer programming when the dimension is small

@article{Clarkson1995LasVA,
  title={Las Vegas algorithms for linear and integer programming when the dimension is small},
  author={K. Clarkson},
  journal={J. ACM},
  year={1995},
  volume={42},
  pages={488-499}
}
  • K. Clarkson
  • Published 1995
  • Mathematics, Computer Science
  • J. ACM
  • This paper gives an algorithm for solving linear programming problems. For a problem with n constraints and d variables, the algorithm requires an expected<inline-equation><f>O<fen lp="par">d<sup>2</sup>n<rp post="par"></fen>+<fen lp="par">logn<rp post="par"></fen>O<fen lp="par">d<rp post="par"></fen><sup>d/2+O<fen lp="par">1<rp post="par"></fen></sup>+O<fen lp="par">d<sup>4</sup><rad><rcd>n</rcd></rad>logn<rp post="par"></fen></f></inline-equation> arithmetic operations, as<inline-equation><f… CONTINUE READING
    246 Citations
    An optimal randomized algorithm for maximum Tukey depth
    • T. Chan
    • Mathematics, Computer Science
    • SODA '04
    • 2004
    • 128
    • PDF
    The 2-center problem in three dimensions
    • 7
    • PDF
    Optimal partition trees
    • T. Chan
    • Mathematics, Computer Science
    • SoCG '10
    • 2010
    • 61
    • PDF
    Output-sensitive construction of the union of triangles
    • 10
    • PDF
    Coresets for Triangulation
    • 4
    • PDF
    Subgradient and sampling algorithms for l1 regression
    • 74
    • PDF
    Parallel linear programming in fixed dimension almost surely in constant time
    • 31
    • PDF
    A Deterministic Linear Program Solver in Current Matrix Multiplication Time
    • J. Brand
    • Mathematics, Computer Science
    • SODA
    • 2020
    • 16
    • PDF
    Low-dimensional linear programming with violations
    • T. Chan
    • Mathematics, Computer Science
    • The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings.
    • 2002
    • 6

    References

    Parallel linear programming in fixed dimension almost surely in constant time
    • 31
    • Highly Influential
    • PDF