Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices.

  title={Large deviations of the maximum eigenvalue for wishart and Gaussian random matrices.},
  author={Satya N. Majumdar and Massimo Vergassola},
  journal={Physical review letters},
  volume={102 6},
We present a Coulomb gas method to calculate analytically the probability of rare events where the maximum eigenvalue of a random matrix is much larger than its typical value. The large deviation function that characterizes this probability is computed explicitly for Wishart and Gaussian ensembles. The method is general and applies to other related problems, e.g., the joint large deviation function for large fluctuations of top eigenvalues. Our results are relevant to widely employed data… CONTINUE READING

From This Paper

Figures, tables, and topics from this paper.


Publications citing this paper.
Showing 1-10 of 11 extracted citations


Publications referenced by this paper.
Showing 1-10 of 19 references


G. Schehr, S. N. Majumdar
Comtet and J. Randon-Furli ng, Phys. Rev. Lett. 101, 150601 • 2008
View 2 Excerpts


D. S. Dean, S. N. Majumdar
Rev. Lett. 97, 160201 (2006); Phys. Rev. E77, 041108 • 2008


P. Vivo, S. N. Majumdar, O. Bohigas, J. Phys
Math- Gen. 40, 4317 • 2007

IEEE Trans

M. Sadek, A. Tarighat, A. H. Sayed
Signal Processing,55, 1498 • 2007

Physica A 344

Z. Burda, J. Jurkiewicz
67 (2004); Z. Burda, J. Jurkiewicz and B. Waclaw, Acta Physica Polonica B 36, 2641 • 2005
View 1 Excerpt

A tutorial on Principal Components Analysi s

L. I. Smith


I. Dumitriu, A. Edelman
Math. Phys., 43, 5830, • 2002


I. M. Johnstone
Statist. 29, 295 • 2001
View 1 Excerpt


K. Johansson
Math. Phys. 209, 437 • 2000
View 1 Excerpt


Y. V. Fyodorov, H.-J. Sommers, J. Math
38, 1918 (1997); Y.V. Fyodorov and B.A. Khoruzhenko, Phys. Rev. Lett . 83, 66 • 1999