# Large Deviations for Products of Random Two Dimensional Matrices

@article{Duarte2019LargeDF, title={Large Deviations for Products of Random Two Dimensional Matrices}, author={Pedro Duarte and Silvius Klein}, journal={Communications in Mathematical Physics}, year={2019}, volume={375}, pages={2191-2257} }

We establish large deviation type estimates for i.i.d. products of two dimensional random matrices with finitely supported probability distribution. The estimates are stable under perturbations and require no irreducibility assumptions. In consequence, we obtain a uniform local modulus of continuity for the corresponding Lyapunov exponent regarded as a function of the support of the distribution. This in turn has consequences on the modulus of continuity of the integrated density of states and…

## 12 Citations

### Parametric Furstenberg Theorem on random products of SL(2,R) matrices

- MathematicsAdvances in Mathematics
- 2021

### Moduli of continuity for the Lyapunov exponents of random 𝐺𝐿(2)-cocycles

- MathematicsTransactions of the American Mathematical Society
- 2019

The Lyapunov exponents of i.i.d. random
G
L
(
2
)
\mathrm {GL}(2)
-cocycles are Hölder continuous functions of the underlying probability distribution at each point with a simple…

### Upper bound on the regularity of the Lyapunov exponent for random products of matrices

- Mathematics
- 2022

We prove that if µ is a ﬁnitely supported measure on SL 2 ( R ) with positive Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function is not α -H¨older around µ for any α…

### Hölder continuity of the Lyapunov exponents of linear cocycles over hyperbolic maps

- MathematicsMathematische Zeitschrift
- 2022

Given a hyperbolic homeomorphism on a compact metric space, consider the space of linear cocycles over this base dynamics which are Hölder continuous and whose projective actions are partially…

### Parametric Furstenberg Theorem on Random Products of $SL(2, \mathbb{R})$ matrices.

- Mathematics
- 2018

We consider random products of $SL(2, \mathbb{R})$ matrices that depend on a parameter in a non-uniformly hyperbolic regime. We show that if the dependence on the parameter is monotone then almost…

### Quantitative lower bounds on the Lyapunov exponent from multivariate matrix inequalities

- MathematicsAnalysis and Mathematical Physics
- 2022

Lyapunov exponents characterize the asymptotic behavior of long matrix products. In this work we introduce a new technique that yields quantitative lower bounds on the top Lyapunov exponent in terms…

### A dynamical Thouless formula

- Mathematics
- 2022

. In this paper we establish an abstract, dynamical Thouless-type formula for aﬃne families of GL(2 , R ) cocycles. This result extends the classical formula relating, via the Hilbert transform, the…

### Pseudo-gaps for random hopping models

- MathematicsJournal of Physics A: Mathematical and Theoretical
- 2020

For one-dimensional random Schrödinger operators, the integrated density of states is known to be given in terms of the (averaged) rotation number of the Prüfer phase dynamics. This paper develops a…

### A random cocycle with non Hölder Lyapunov exponent

- MathematicsDiscrete & Continuous Dynamical Systems - A
- 2019

We provide an example of a Schr\"odinger cocycle over a mixing Markov shift for which the integrated density of states has a very weak modulus of continuity, close to the log-H\"older lower bound…

### The avalanche principle and negative curvature

- MathematicsMathematische Zeitschrift
- 2019

We use the geometric structure of the hyperbolic upper half plane to provide a new proof of the Avalanche Principle introduced by M. Goldstein and W. Schlag in the context of $$\mathrm…

## References

SHOWING 1-10 OF 31 REFERENCES

### Moduli of continuity for the Lyapunov exponents of random 𝐺𝐿(2)-cocycles

- MathematicsTransactions of the American Mathematical Society
- 2019

The Lyapunov exponents of i.i.d. random
G
L
(
2
)
\mathrm {GL}(2)
-cocycles are Hölder continuous functions of the underlying probability distribution at each point with a simple…

### Continuity of Lyapunov exponents for random two-dimensional matrices

- MathematicsErgodic Theory and Dynamical Systems
- 2016

The Lyapunov exponents of locally constant $\text{GL}(2,\mathbb{C})$ -cocycles over Bernoulli shifts vary continuously with the cocycle and the invariant probability measure.

### Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent

- MathematicsTransactions of the American Mathematical Society
- 2019

We provide a complete and self-contained proof of spectral and dynamical localization for the one-dimensional Anderson model, starting from the positivity of the Lyapunov exponent provided by…

### Effective perturbation theory for linear operators

- Mathematics
- 2017

We propose a new approach to the spectral theory of perturbed linear operators , in the case of a simple isolated eigenvalue. We obtain two kind of results: "radius bounds" which ensure perturbation…

### Lyapunov Exponents of Linear Cocycles: Continuity via Large Deviations

- Mathematics
- 2016

Introduction.- Estimates on Grassmann Manifolds.- Abstract Continuity of Lyapunov Exponents.- The Oseledets Filtration and Decomposition.- Large Deviations for Random Cocycles.- Large Deviations for…

### Holder continuity of the integrated density of states for quasi-periodic Schrodinger equations and averages of shifts of subharmonic functions

- Mathematics
- 2001

In this paper we consider various regularity results for discrete quasiperiodic Schr6dinger equations --n+l - Pn-1 + V(9 + nw)on = EOn with analytic potential V. We prove that on intervals of…

### Schrödinger operators with dynamically defined potentials

- MathematicsErgodic Theory and Dynamical Systems
- 2016

In this survey we discuss spectral and quantum dynamical properties of discrete one-dimensional Schrödinger operators whose potentials are obtained by real-valued sampling along the orbits of an…

### Approximating Lyapunov Exponents and Stationary Measures

- MathematicsJournal of Dynamics and Differential Equations
- 2019

We give a new proof of E. Le Page’s theorem on the Hölder continuity of the first Lyapunov exponent in the class of irreducible Bernoulli cocycles. This suggests an algorithm to approximate the first…

### Random matrix products and measures on projective spaces

- Mathematics
- 1983

The asymptotic behavior of ‖XnXn−1…X1υ‖ is studied for independent matrix-valued random variablesXn. The main tool is the use of auxiliary measures in projective space and the study of markov…

### Large Deviations of the Lyapunov Exponent and Localization for the 1D Anderson Model

- MathematicsCommunications in Mathematical Physics
- 2019

The proof of Anderson localization for the 1D Anderson model with arbitrary (e.g. Bernoulli) disorder, originally given by Carmona–Klein–Martinelli in 1987, is based in part on the multi-scale…