Laplacian Operators and Q-curvature on Conformally Einstein Manifolds
@article{Gover2005LaplacianOA, title={Laplacian Operators and Q-curvature on Conformally Einstein Manifolds}, author={A. Rod Gover}, journal={Mathematische Annalen}, year={2005}, volume={336}, pages={311-334} }
A new definition of canonical conformal differential operators Pk (k = 1,2,...), with leading term a kth power of the Laplacian, is given for conformally Einstein manifolds of any signature. These act between density bundles and, more generally, between weighted tractor bundles of any rank. By construction these factor into a power of a fundamental Laplacian associated to Einstein metrics. There are natural conformal Laplacian operators on density bundles due to Graham–Jenne–Mason–Sparling…
114 Citations
Conformal Operators on Forms and Detour Complexes on Einstein Manifolds
- Mathematics
- 2007
For even dimensional conformal manifolds several new conformally invariant objects were found recently: invariant differential complexes related to, but distinct from, the de Rham complex (these are…
Conformal boundary operators, T-curvatures, and conformal fractional Laplacians of odd order
- Mathematics
- 2018
We construct continuously parametrised families of conformally invariant boundary operators on densities. These may also be viewed as conformally covariant boundary operators on functions and…
Conformal Operators on Weighted Forms; Their Decomposition and Null Space on Einstein Manifolds
- Mathematics
- 2012
There is a class of Laplacian like conformally invariant differential operators on differential forms $${L^\ell_k}$$Lkℓ which may be considered as the generalisation to differential forms of the…
Conformal Invariants from Nodal Sets. I. Negative Eigenvalues and Curvature Prescription
- Mathematics
- 2012
In this paper, we study conformal invariants that arise from nodal sets and negative eigenvalues of conformally covariant operators; more specifically, the GJMS operators, which include the Yamabe…
On conformally covariant powers of the Laplacian
- Mathematics
- 2011
We propose and discuss recursive formulas for conformally covariant powers $P_{2N}$ of the Laplacian (GJMS-operators). For locally conformally flat metrics, these describe the non-constant part of…
Boundary Operators Associated With the Sixth-Order GJMS Operator
- MathematicsInternational Mathematics Research Notices
- 2019
We describe a set of conformally covariant boundary operators associated with the 6th-order Graham--Jenne--Mason--Sparling (GJMS) operator on a conformally invariant class of manifolds that…
Asymptotic expansions and conformal covariance of the mass of conformal differential operators
- Mathematics
- 2016
We give an explicit description of the full asymptotic expansion of the Schwartz kernel of the complex powers of m-Laplace type operators L on compact Riemannian manifolds in terms of Riesz…
Poincare-Einstein Holography for Forms via Conformal Geometry in the Bulk
- Mathematics
- 2012
We study higher form Proca equations on Einstein manifolds with boundary data along conformal infinity. We solve these Laplace-type boundary problems formally, and to all orders, by constructing an…
Conformally covariant differential operators acting on spinor bundles and related conformal covariants
- Mathematics
- 2013
Conformal powers of the Dirac operator on semi Riemannian spin manifolds are investigated. We give a new proof of the existence of conformal odd powers of the Dirac operator on semi Riemannian spin…
Boundary calculus for conformally compact manifolds
- Mathematics
- 2011
On conformally compact manifolds of arbitrary signature, we use conformal geometry to identify a natural (and very general) class of canonical boundary problems. It turns out that these encompass and…
References
SHOWING 1-10 OF 27 REFERENCES
Conformally Invariant Operators, Differential Forms, Cohomology and a Generalisation of Q-Curvature
- Mathematics
- 2003
On conformal manifolds of even dimension n ≥ 4 we construct a family of new conformally invariant differential complexes, each containing one coboundary operator of order greater than 1. Each bundle…
Conformally invariant powers of the Laplacian — A complete nonexistence theorem
- Mathematics
- 2003
Conformally invariant operators and the equations they determine play a central role in the study of manifolds with pseudo-Riemannian, Riemannian, conformai and related structures. This observation…
The ambient obstruction tensor and the conformal deformation complex
- Mathematics
- 2004
We construct here a conformally invariant differential operator on algebraic Weyl tensors that gives special curved analogues of certain operators related to the deformation complex and that, upon…
Explicit functional determinants in four dimensions
- Mathematics
- 1991
4 2 2 ABSTRACT. Working on the four-sphere S , a flat four-torus, S x S2, or a compact hyperbolic space, with a metric which is an arbitrary positive function times the standard one, we give explicit…
Ambient metric construction of Q-curvature in conformal and CR geometries
- Mathematics
- 2003
We give a geometric derivation of Branson's Q-curvature in terms of the ambient metric associated with conformal structures; it naturally follows from the ambient metric construction of conformally…
Sharp inequalities, the functional determinant, and the complementary series
- Mathematics
- 1995
Results in the spectral theory of differential operators, and recent results on conformally covariant differential operators and on sharp inequalities, are combined in a study of functional…
On Conformal Geometry.
- Computer ScienceProceedings of the National Academy of Sciences of the United States of America
- 1926
Four functionals on the space of normalized almost Hermitian metrics on almost complex manifolds are discussed and the Euler-Lagrange equations for all these functionals are computed – as a tool for characterizing these metrics.
Notes on conformal differential geometry
- Mathematics
- 1996
This survey paper presents lecture notes from a series of four lectures addressed to a wide audience and it offers an introduction to several topics in conformal differential geometry. In particular,…
Conformally invariant differential operators on Minkowski space and their curved analogues
- Mathematics
- 1987
This article describes the construction of a natural family of conformally invariant differential operators on a four-dimensional (pseudo-)Riemannian manifold. Included in this family are the usual…