Lagrange and the four-square theorem

  title={Lagrange and the four-square theorem},
  author={Jenny Boucard},
  journal={Lettera Matematica},
  • J. Boucard
  • Published 22 May 2014
  • Mathematics, Computer Science
  • Lettera Matematica
In this article we will first provide an overview of Lagrange’s arithmetic work, written between 1768 and 1777. We then focus on the proof of the four-square theorem published in 1772, and shed light on the context of its implementation by relying on other memoirs by Lagrange and Leonhard Euler. By means of this analysis, our goal is to give a concrete vision of the arithmetic, algebraic and analytical methods and tools used by Lagrange in number theory and place his arithmetic practice in the… 
1 Citations

New Semi-Prime Factorization and Application in Large RSA Key Attacks

This paper proves that if a Pythagorean quadruple is known and one of its squares represents a Pythgorean triple, then the semi-prime is factorized, and provides the algorithm of the proposed semi- prime factorization method, highlighting its complexity and comparative advantage of the solution space with Fermat’s method.



On Euler's contributions to the four-squares theorem

A passage in Euler's notebook 132 (written between 1740 and 1744) concerning the four-squares theorem is interpreted in a new way. The proof of the four-squares theorem is based on three lemmas.

A History of Factor Tables with Notes on the Birth of Number Theory 1657–1817

The history of the construction, organisation and publication of factor tables from 1660 to 1817, in itself a fascinating story, also touches upon many topics of general interest for the history of

From Fermat to Gauss: indefinite descent and methods of reduction in number theory

IndexForeword IPreface by Joachim Fischer III-VIIChapter 1: Introduction, 1-161. What is the infinite or indefinite descent 1-42. The set of problems dealt with applying the descent 4-123. Indefinite

Number Theory: An approach through history From Hammurapi to Legendre

Protohistory.- Fermat and His Correspondents.- Euler.- An Age of Transition: Lagrange and Legendre.

Factor tables 1657–1817, with notes on the birth of number theory

La fabrication, l'organisation et la publication des tables de diviseurs, de 1657 a 1817, constitue non seulement une histoire fascinante en soi, mais souleve en meme temps des enjeux plus generaux


• Goal: Preserve as many registers upon a subroutine call as possible. • New localand output register must be provided. • Output registers of caller must be copied/mapped to input registers of callee

Descente infinie et analyse diophantienne : programmes de travail et mises en œuvre chez Fermat, Levi, Mordell et Weil

La descente infinie est un procede demonstratif dont le nom, sinon l’emploi, est du a Pierre de Fermat. Il consiste a montrer qu’on peut deduire systematiquement d’une solution en nombres entiers a

Un "rapprochement curieux de l'algèbre et de la théorie des nombres" : études sur l'utilisation des congruences en France de 1801 à 1850

Gauss introduit la notion de congruence en 1801 dans les Disquisitiones Arithmeticae. L'historiographie classique relie le plus souvent l'histoire de cette notion au developpement de la theorie des

L’arithmétique de Pierre Fermat dans le contexte de la correspondance de Mersenne : une approche microsociale

Un loup solitaire . . . ayant commerce de tous cotes avec les savants. Un magistrat concentre sur ses devoirs publics, notant ses observations mathematiques comme s’il ✭✭ s’occupa[i]t d’autre chose