Lagrange Interpolation and Finite Element Superconvergence

@inproceedings{Bo2004LagrangeIA,
  title={Lagrange Interpolation and Finite Element Superconvergence},
  author={Li Bo},
  year={2004}
}
Abstract. We consider the finite element approximation of the Laplacian operator with the homogeneous Dirichlet boundary condition, and study the corresponding Lagrange interpolation in the context of finite element superconvergence. For ddimensional Qk-type elements with d ≥ 1 and k ≥ 1, we prove that the interpolation points must be the Lobatto points if the Lagrange interpolation and the finite element solution are superclose in H norm. For d-dimensional Pk-type elements, we consider the… CONTINUE READING
9 Citations
31 References
Similar Papers

References

Publications referenced by this paper.
Showing 1-10 of 31 references

Superconvergence of the gradient for quadratic triangular finite element methods

  • A. B. Andreev, R. D. Lazarov
  • Numer. Methods for PDEs, 4:15–32
  • 1988
Highly Influential
7 Excerpts

Kř́ı”žek. Gradient superconvergence on uniform simplicial partitions of polytopes

  • M.J.H. Brandts
  • IMA J. Numer. Anal.,
  • 2003
1 Excerpt

A review of two different approaches for superconvergence analysis

  • Q.-D. Zhu
  • Appl. Math., 43:401–411
  • 1998
1 Excerpt

Superconvergence points in locally uniform finite element meshes for second order two-point boundary value problems

  • R. D. Dunlap
  • PhD thesis, Cornell University
  • 1996
1 Excerpt

Ultraconvergence of the patch recovery technique

  • Z. Zhang
  • Math. Comp., 65:1431–1437
  • 1996
1 Excerpt

High Accuracy Theory of Finite Element Methods

  • C. M. Chen, Y. Q. Huang
  • 1995
1 Excerpt

Similar Papers

Loading similar papers…