La quatrième tour de Hanöı
@inproceedings{Bousch2014LaQT, title={La quatrième tour de Hanöı}, author={Thierry Bousch}, year={2014} }
In the four-peg variant of the Towers of Hanoi game, it is well known that N disks can be transferred from a column to another in 2 + 2 + · · · + 2 moves, where ∇n denotes the largest integer p such that p(p + 1)/2 6 n, and it was conjectured that this number of moves was the minimum possible. We shall see, in this article, that is is indeed the case. Résumé Dans la variante à quatre colonnes des Tours de Hanöı, on sait bien qu’on peut transférer N disques d’une colonne vers une autre en 2 + 2… CONTINUE READING
5 Citations
A New Lower Bound for the Towers of Hanoi Problem
- Mathematics, Computer Science
- Electron. J. Comb.
- 2016
- 3
- Highly Influenced
- PDF
Simple Variations on The Tower of Hanoi: A Study of Recurrences and Proofs by Induction
- Mathematics
- 2020
- PDF
A survey and classification of Sierpiński-type graphs
- Mathematics, Computer Science
- Discret. Appl. Math.
- 2017
- 36
- PDF
References
SHOWING 1-10 OF 11 REFERENCES
On the Frame--Stewart Conjecture about the Towers of Hanoi
- Mathematics, Computer Science
- SIAM J. Comput.
- 2004
- 27
- PDF
In How Many Steps the k Peg Version of the Towers of Hanoi Game Can Be Solved?
- Mathematics, Computer Science
- STACS
- 1999
- 39
- PDF
Recent Progress in Heuristic Search: A Case Study of the Four-Peg Towers of Hanoi Problem
- Mathematics, Computer Science
- IJCAI
- 2007
- 56
- PDF
Results and open problems on the Tower of Hanoi
- Congressus Numerantium
- 1999
Editorial Note concerning Advanced Problem 3918
- American Mathematical Monthly
- 1941
Solution to Advanced Problem 3918
- American Mathematical Monthly
- 1941
Solution to Advanced Problem 3918
- American Mathematical Monthly
- 1941