Corpus ID: 14243013

La quatrième tour de Hanöı

@inproceedings{Bousch2014LaQT,
  title={La quatrième tour de Hanöı},
  author={Thierry Bousch},
  year={2014}
}
  • Thierry Bousch
  • Published 2014
  • In the four-peg variant of the Towers of Hanoi game, it is well known that N disks can be transferred from a column to another in 2 + 2 + · · · + 2 moves, where ∇n denotes the largest integer p such that p(p + 1)/2 6 n, and it was conjectured that this number of moves was the minimum possible. We shall see, in this article, that is is indeed the case. Résumé Dans la variante à quatre colonnes des Tours de Hanöı, on sait bien qu’on peut transférer N disques d’une colonne vers une autre en 2 + 2… CONTINUE READING
    5 Citations
    Two-player Tower of Hanoi
    • PDF
    A New Lower Bound for the Towers of Hanoi Problem
    • C. Grosu
    • Mathematics, Computer Science
    • Electron. J. Comb.
    • 2016
    • 3
    • Highly Influenced
    • PDF
    Simple Variations on The Tower of Hanoi: A Study of Recurrences and Proofs by Induction
    • PDF
    A survey and classification of Sierpiński-type graphs
    • 36
    • PDF

    References

    SHOWING 1-10 OF 11 REFERENCES
    Variations on the Four-Post Tower of Hanoi Puzzle
    • 45
    • PDF
    On the Frame--Stewart Conjecture about the Towers of Hanoi
    • 27
    • PDF
    The Tower of Hanoi - Myths and Maths
    • 92
    • PDF
    In How Many Steps the k Peg Version of the Towers of Hanoi Game Can Be Solved?
    • 39
    • PDF
    Results and open problems on the Tower of Hanoi
    • Congressus Numerantium
    • 1999
    Editorial Note concerning Advanced Problem 3918
    • American Mathematical Monthly
    • 1941
    Solution to Advanced Problem 3918
    • American Mathematical Monthly
    • 1941
    Solution to Advanced Problem 3918
    • American Mathematical Monthly
    • 1941