• Published 2002

LYAPUNOV EXPONENTS FOR THE PARABOLIC ANDERSON MODEL

@inproceedings{Cranston2002LYAPUNOVEF,
  title={LYAPUNOV EXPONENTS FOR THE PARABOLIC ANDERSON MODEL},
  author={Michael Cranston and Thomas S. Mountford},
  year={2002}
}
We consider the asymptotic almost sure behavior of the solution of the equation u(t, x) = u0(x) + κ ∫ t 

Citations

Publications citing this paper.
SHOWING 1-10 OF 40 CITATIONS

The parabolic Anderson model in a dynamic random environment : basic properties of the quenched Lyapunov exponent

D. Erharda, F. den Hollandera, G. Maillardb
  • 2017
VIEW 7 EXCERPTS
CITES BACKGROUND & METHODS
HIGHLY INFLUENCED

Properties of the Parabolic Anderson Model and the Anderson Polymer Model

VIEW 6 EXCERPTS
CITES METHODS & BACKGROUND
HIGHLY INFLUENCED

References

Publications referenced by this paper.
SHOWING 1-10 OF 12 REFERENCES

An improved subadditive ergodic theorem

T M.Liggett
  • Ann. Probab.,
  • 1985
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Parabolic Anderson problem and intermittency

R A.Carmona, S A.Molchanov
  • Mem. Amer. Math. Soc
  • 1994
VIEW 9 EXCERPTS
HIGHLY INFLUENTIAL

A note on limiting behaviour of disastrous environment exponents

T S.Mountford
  • Electron. J. Probab
  • 2001
VIEW 3 EXCERPTS

Percolation, Springer-Verlag

G. Grimmett
  • New York,
  • 1999
VIEW 1 EXCERPT

Sharp upper bound on the almost-sure exponential behavior of a stochastic partial equation, Random Oper

R A.Carmona, S A.Molchanov, F. Viens
  • Stochastic Equations 4 no
  • 1996
VIEW 1 EXCERPT