LXXVI. Quaternionic form of relativity
@article{SilbersteinLXXVIQF, title={LXXVI. Quaternionic form of relativity}, author={L. Silberstein}, journal={Philosophical Magazine Series 1}, volume={23}, pages={790-809} }
where in the case of pure rotation a and b must of course be either unit-quaternions or at least such that T 2 a.T 2 b = 1; T denoting the tensor. On the other hand, it is widely known that the so-called Lorentz-transformation of the union of ordinary space (x,y,z) and time (t), which is the basis of the modern theory of Relativity, corresponds precisely to a (hyperbolic) rotation of the fourdimensional manifoldness (x,y,z, t), or of what Minkowski called the “world.” Hence the obvious idea of… CONTINUE READING
51 Citations
The geometry and algebra of the representations of the Lorentz group
- Mathematics
- Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences
- 1968
- 6