LOCALIZING SUBCATEGORIES IN THE BOOTSTRAP CATEGORY OF SEPARABLE C∗-ALGEBRAS

@inproceedings{2010LOCALIZINGSI,
  title={LOCALIZING SUBCATEGORIES IN THE BOOTSTRAP CATEGORY OF SEPARABLE C∗-ALGEBRAS},
  author={},
  year={2010}
}
  • Published 2010
Using the classical universal coefficient theorem of RosenbergSchochet, we prove a simple classification of all localizing subcategories of the Bootstrap category Boot ⊂ KK of separable complex C*-algebras. Namely, they are in a bijective correspondence with subsets of the Zariski spectrum Spec Z of the integers – precisely as for the localizing subcategories of the derived category D(Z) of complexes of abelian groups. We provide corollaries of this fact and put it in context with the similar… CONTINUE READING

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-9 of 9 references

Tensor triangular geometry and KK-theory, preprint arXiv:1001.2637v1 [math.KT

Ivo Dell’Ambrogio
2010
View 1 Excerpt

Operator Algebras

Bruce Blackadar
1998
View 1 Excerpt

Une notion de nucléarité en K-théorie (d’après

Georges Skandalis
J. Cuntz), K-theory • 1988

The operator K-functor and extensions of C∗-algebras

G. G. Kasparov
Izv. Akad. Nauk SSSR Ser. Mat • 1980
View 1 Excerpt