L2-betti Numbers of Discrete Measured Groupoids

@article{Sauer2005L2bettiNO,
  title={L2-betti Numbers of Discrete Measured Groupoids},
  author={Roman Sauer},
  journal={IJAC},
  year={2005},
  volume={15},
  pages={1169-1188}
}
There are notions of L2-Betti numbers for discrete groups (Cheeger–Gromov, Lück), for type II 1-factors (recent work of Connes-Shlyakhtenko) and for countable standard equivalence relations (Gaboriau). Whereas the first two are algebraically defined using Lück’s dimension theory, Gaboriau’s definition of the latter is inspired by the work of Cheeger and Gromov. In this work we give a definition of L2-Betti numbers of discrete measured groupoids that is based on Lück’s dimension theory, thereby… CONTINUE READING

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 15 references

Invariants l2 de relations d’équivalence et de groupes

  • D. Gaboriau
  • Publ. Math. Inst. Hautes Études Sci. (95)
  • 2002
Highly Influential
12 Excerpts

Elliptic operators

  • M. F. Atiyah
  • discrete groups and von Neumann algebras, Ast…
  • 1976
Highly Influential
3 Excerpts

L2-invariants of groups and discrete measured groupoids

  • R. Sauer
  • dissertation, Universität Münster
  • 2003

L2-Invariants: Theory and Applications to Geometry and K-Theory

  • W. Lück
  • Ergebnisse der Mathematik und ihrer Grenzgebiete…
  • 2002

Amenable Groupoids

  • C. Anantharaman-Delaroche, J. Renault
  • Monographies de L’Enseignement Mathématique…
  • 2000
1 Excerpt

Homological algebra

  • H. Cartan, S. Eilenberg
  • Princeton Landmarks in Mathematics
  • 1999
1 Excerpt

Lectures on Modules and Rings

  • T. Y. Lam
  • Graduate Texts in Mathematics, Vol. 189
  • 1999

Similar Papers

Loading similar papers…