L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport
@article{Sati2009L, title={L ∞ -Algebra Connections and Applications to String- and Chern-Simons n-Transport}, author={Hisham Sati and Urs Schreiber and Jim Stasheff}, journal={arXiv: Differential Geometry}, year={2009}, pages={303-424} }
We give a generalization of the notion of a Cartan-Ehresmann connection from Lie algebras to L ∞-algebras and use it to study the obstruction theory of lifts through higher String-like extensions of Lie algebras. We find (generalized) Chern-Simons and BF-theory functionals this way and describe aspects of their parallel transport and quantization.
107 Citations
Twisted iterated algebraic K-theory and
topological T-duality for sphere bundles
- MathematicsAnnals of K-Theory
- 2020
We introduce a periodic form of the iterated algebraic K-theory of ku, the (connective) complex K-theory spectrum, as well as a natural twisting of this cohomology theory by higher gerbes.…
The L∞-algebra of the S-matrix
- MathematicsJournal of High Energy Physics
- 2019
Abstract
We point out that the one-particle-irreducible vacuum correlation functions of a QFT are the structure constants of an L
∞-algebra, whose Jacobi identities hold whenever there are no…
L∞-algebra models and higher Chern–Simons theories
- Mathematics
- 2015
We continue our study of zero-dimensional field theories in which the fields take values in a strong homotopy Lie algebra. In the first part, we review in detail how higher Chern–Simons theories…
Twisted Weil Algebras for the String Lie 2‐Algebra
- MathematicsFortschritte der Physik
- 2019
In this article, we give a concise summary of L∞ ‐algebras viewed in terms of Chevalley–Eilenberg algebras, Weil algebras and invariant polynomials and their use in defining connections in higher…
Higher Lie and Leibniz algebras
- Mathematics
- 2013
Higher structures - infinity algebras and other objects up to homotopy, categorified algebras, `oidified' concepts, operads, higher categories, higher Lie theory, higher gauge theory... - are…
A higher Chern-Weil derivation of AKSZ sigma-models
- Mathematics
- 2013
Chern–Weil theory provides for each invariant polynomial on a Lie algebra 𝔤 a map from 𝔤-connections to differential cocycles whose volume holonomy is the corresponding Chern–Simons theory action…
HOLONOMIES FOR CONNECTIONS WITH VALUES IN L∞-ALGEBRAS
- Mathematics
- 2014
Given a flat connection α on a manifoldM with values in a filtered L∞-algebra g, we construct a morphism hol ∞ α : C•(M)→ BÛ∞(g), which generalizes the holonomy map associated to a flat connection…
The Wess-Zumino-Witten term of the M5-brane and differential cohomotopy
- Mathematics
- 2015
We combine rational homotopy theory and higher Lie theory to describe the Wess-Zumino-Witten (WZW) term in the M5-brane sigma model. We observe that this term admits a natural interpretation as a…
Holohonies for connections with values in $L_\infty$-algebras
- Mathematics
- 2014
Given a flat connection on a manifold with values in a filtered L-infinity-algebra, we construct a morphism of coalgebras that generalizes the holonomies of flat connections with values in Lie…
Supersymmetric Yang-Mills theory as higher Chern-Simons theory
- Mathematics
- 2017
A bstractWe observe that the string field theory actions for the topological sigma models describe higher or categorified Chern-Simons theories. These theories yield dynamical equations for…
References
SHOWING 1-10 OF 119 REFERENCES
Twisted K-Theory and K-Theory of Bundle Gerbes
- Mathematics
- 2002
Abstract: In this note we introduce the notion of bundle gerbe K-theory and investigate the relation to twisted K-theory. We provide some examples. Possible applications of bundle gerbe K-theory to…
On the vanishing problem of string classes
- Mathematics
- 1996
Abstract The ordinary string class is an obstruction to lift the structure group LSpin(n) of a loop group bundle LQ → LM to the universal central extension of LSpin(n) by the circle. The vanishing…
Heterotic string data and theta functions
- Mathematics
- 2001
We use the language of dierential cohomology to give an analytic description of the moduli space of classical vacua for heterotic string theory in eight dimensions. The complex structure of this…
Higher algebraic structures and quantization
- Mathematics
- 1994
We derive (quasi-)quantum groups in 2+1 dimensional topological field theory directly from the classical action and the path integral. Detailed computations are carried out for the Chern-Simons…
AKSZ–BV Formalism and Courant Algebroid-Induced Topological Field Theories
- Mathematics
- 2006
We give a detailed exposition of the Alexandrov–Kontsevich–Schwarz– Zaboronsky superfield formalism using the language of graded manifolds. As a main illustrating example, to every Courant algebroid…
Integrating $L_\infty $-algebras
- MathematicsCompositio Mathematica
- 2008
Abstract Given a Lie n-algebra, we provide an explicit construction of its integrating Lie n-group. This extends work done by Getzler in the case of nilpotent $L_\infty $-algebras. When applied to an…