Lösung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren

@article{SauterLsungDD,
  title={L{\"o}sung der Diracschen Gleichungen ohne Spezialisierung der Diracschen Operatoren},
  author={Fritz Sauter},
  journal={Zeitschrift f{\"u}r Physik},
  volume={63},
  pages={803-814}
}
  • F. Sauter
  • Published 1 May 1930
  • Physics
  • Zeitschrift für Physik
ZusammenfassungEs wurde eine Methode angegeben, die die Diracschen Gleichungen zu lösen gestattet, ohne eine spezielle Darstellung für die Diracschen Operatoren zu benötigen. Sie dürfte gegenüber den bisher üblichen Methoden den Vorzug größerer Übersichtlichkeit besitzen und gestattet vor allem, den wichtigen Unterschied zwischen linear unabhängigen und wesentlich verschiedenen Lösungen klarzustellen.Die Durchrechnung spezieller, Probleme (Elektron im feldfreien Raum, Keplerproblem… 
Exakte Reduktion Der Allgemeinrelativistischen Dirac-Gleichung Auf Eine Pauli-Typ-Gleichung. I
ZusammenfassungIm Teil I wird die allgemeinrelativistische Dirac-Gleichung mittels geeigneter Nullteiler exakt auf eine mit der Paulischen σ(a)-Algebra geschriebene Quantengleichung vom Pauli-Typ
Lanczos-Einstein-Petiau: From Dirac ' $s$ equation to nonlinear wave mechanics
In 1929 Lanczos showed how to derive Dirac's equation from a more fundamental system that predicted that spin 1/2 particles should come in pairs. Today, these pairs can unambiguously be interpreted
Representation-Free Calculations in Relativistic Quantum Mechanics
It was shown by Pauli that expectation values in relati- vistic quantum mechanics for spin-1/2 particles are independent of the representation chosen for the Dirac matrices. In this paper we extend
Algebraic Criteria for Entanglement in Multipartite Systems
Abstract Quantum computing depends heavily on quantum entanglement. It has been known that geometric models for correlated two-state quantum systems (qubits) can be developed using geometric algebra.
Peirce, Clifford, and Dirac
There is a clear line of progression from the “logic of relations” of Charles Sanders Peirce through the algebras of William Kingdon Clifford. Further, it has been shown how one can obtain the
Clifford Algebras and Spinor Operators
This paper begins with a historical survey on Clifford algebras and a model on how to start an undergraduate course on Clifford algebras. The Dirac equation and the bilinear covariants are discussed.
Pauli theorem in the description of n-dimensional spinors in the Clifford algebra formalism
We discuss a generalized Pauli theorem and its possible applications for describing n-dimensional (Dirac, Weyl, Majorana, and Majorana-Weyl) spinors in the Clifford algebra formalism. We give the
Left-Right symmetric fermions and sterile neutrinos from complex split biquaternions and bioctonions
In this article we investigate the application of complex split biquaternions and bioctonions to the standard model. We show that the Clifford algebras Cl(3) and Cl(7) can be used for making
Algebraic spinors in Dirac propagators as a directed random walk
The directed random walk representation of the Dirac propagator is presented using different algebraic spinor spaces. In particular, Majorana, Even, Dirac, and Chevalley–Crumeyrolle spinor spaces are
...
...