Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold.

@article{OttinoLffler2016KuramotoMW,
  title={Kuramoto model with uniformly spaced frequencies: Finite-N asymptotics of the locking threshold.},
  author={Bertrand Ottino-L{\"o}ffler and Steven H. Strogatz},
  journal={Physical review. E},
  year={2016},
  volume={93 6},
  pages={
          062220
        }
}
We study phase locking in the Kuramoto model of coupled oscillators in the special case where the number of oscillators, N, is large but finite, and the oscillators' natural frequencies are evenly spaced on a given interval. In this case, stable phase-locked solutions are known to exist if and only if the frequency interval is narrower than a certain critical width, called the locking threshold. For infinite N, the exact value of the locking threshold was calculated 30 years ago; however, the… CONTINUE READING
Tweets
This paper has been referenced on Twitter 3 times. VIEW TWEETS

References

Publications referenced by this paper.
SHOWING 1-10 OF 28 REFERENCES

Phys

  • H. Hong, H. Park, M. Y. Choi
  • Rev. E 72, 036217
  • 2005
Highly Influential
12 Excerpts

Biol

  • G. B. Ermentrout, J. Math
  • 22, 1
  • 1985
Highly Influential
5 Excerpts

Exp

  • D. Bailey, J. Borwein, R. Crandall
  • Math. 18, 107
  • 2009
Highly Influential
3 Excerpts

Phys

  • F. A. Rodrigues, T. K. DM. Peron, P. Ji, J. Kurths
  • Rep. 610, 1
  • 2016

Chaos 25

  • A. Pikovsky, M. Rosenblum
  • 097616
  • 2015

Phys

  • H. Hong, H. Chaté, L.-H. Tang, H. Park
  • Rev. E 92, 022122
  • 2015

Automatica 50

  • F. Dörfler, F. Bullo
  • 1539
  • 2014

Dyn

  • M. Verwoerd, O. Mason, SIAM J. Appl
  • Syst. 10, 906
  • 2011

Dyn

  • F. Dörfler, F. Bullo, SIAM J. Appl
  • Syst. 10, 1070
  • 2011
1 Excerpt

and C

  • F.W.J. Olver, D. W. Lozier, R. F. Boisvert
  • W. Clark, NIST Handbook of Mathematical Functions…
  • 2010

Similar Papers

Loading similar papers…