Konfigurationsraum und zweite Quantelung

  title={Konfigurationsraum und zweite Quantelung},
  author={V. Fock},
  journal={Zeitschrift f{\"u}r Physik},
  • V. Fock
  • Published 1 September 1932
  • Physics
  • Zeitschrift für Physik
ZusammenfassungEs wird der Zusammenhang zwischen der Methode der gequantelten Wellenfunktionen und der Koordinatenraummethode untersucht. Die Operatoren der zweiten Quantelung werden in einer Folge von Konfigurationsräumen für 1, 2, ... usw. Teilchen dargestellt. Die gewonnene Darstellung ermöglicht eine einfache Ableitung der Hartreeschen Gleichungen mit Austausch. 
Algebras Generated by Toeplitz Operators on the Hardy Space over the Siegel Domain
Following the approach of Loaiza and Vasilevski (Equ Oper Theory 92(3): 33, 2020, https://doi.org/10.1007/s00020-020-02580-x ; “Operator Theory, Functional Analysis and Applications”, Oper Theory
Integrability Aspects of the Current Algebra Representation and the Factorized Quantum Nonlinear Schrödinger Type Dynamical Systems
In this work we study integrability aspects of the current algebra representation and the factorized quantum nonlinear Schrodinger type dynamical systems, initiated before by G. Goldin with
Projector Quantum Monte Carlo Methods for Linear and Non-linear Wavefunction Ansatzes
Projector Quantum Monte Carlo Methods for Linear and Non-linear Wavefunction Ansatzes Lauretta Rebecca Schwarz This thesis is concerned with the development of a Projector Quantum Monte Carlo method
Telepathy for Interstellar and Intergalaxies Communications
In the present paper telepathy is considered as a relevant mechanism of the information exchange between thinking systems separated by enormous cosmic distance, e. g., between galaxies or between
–Invariant Fock–Carleson Type Measures for Derivatives of Order k and the Corresponding Toeplitz Operators
Our purpose is to characterize the so-called horizontal Fock-Carleson type measures for derivatives of order $k$ (we write it $k$-hFC for short) for the Fock space as well as the Toeplitz operators
Variational renormalization group methods for extended quantum systems
bipartition is equally possible. If O (A) and O (B) represent two observables that act non-trivially only on party A, respectively on party B , then the connected correlation function ΓA,B is defined
REMP: A hybrid perturbation theory providing improved electronic wavefunctions and properties.
REMP is shown to fulfill all required fundamental boundary conditions of proper wavefunction based quantum chemical methods (unitary invariance and size consistency) and shows equal performance as the best coupled pair approaches or pCCSD methods as well as thebest double hybrid density functionals.
Radial Toeplitz Operators on the Fock Space and Square-Root-Slowly Oscillating Sequences
In this paper we show that the C*-algebra generated by radial Toeplitz operators with $$L_{\infty }$$L∞-symbols acting on the Fock space is isometrically isomorphic to the C*-algebra of bounded
Algebras of Toeplitz Operator on the Three-Dimensional Siegel Domain
We give a detailed description of a $$C^*$$C∗-algebra generated by Toeplitz operators acting on the weighted Bergman space over three-dimensional Siegel domain. The symbols of these generating