Corpus ID: 119689314

Kober fractional q-integral operator of the basic analogue of the H-function

@article{Saxena2005KoberFQ,
  title={Kober fractional q-integral operator of the basic analogue of the H-function},
  author={R. K. Saxena and R. K. Yadav and S. D. Purohit and Shyam L. Kalla},
  journal={Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia},
  year={2005},
  volume={28},
  pages={154-158}
}
This paper deals with the derivation of the Kober fractional q-integral operator of the basic analogue of the H-function defined by Saxena, Modi and Kalla [Rev. Tec. Ing., Univ. Zulia. 6(1983), 139-143]. Several interesting results .involving Gq(.);Eq(.); the basic elementary functions and the basic Bessel functions such as Jv(x; q); Yv(x; q); Kv(x; q); Hv(x; q), are deduced as the special cases of the main results. 
21 Citations

Tables from this paper

References

SHOWING 1-10 OF 14 REFERENCES
Certain fractional q-integrals and q-derivatives
  • 264
  • Highly Influential
Some Fractional q -Integrals and q -Derivatives
  • 236
  • Highly Influential
  • PDF
BASIC HYPERGEOMETRIC SERIES
  • 660
  • PDF
Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences
  • 329
. 6 / . ? / . @ /
  • 2,196
  • PDF
The H-function with applications in statistics and other disciplines
  • 454
Application of Riemann-Liouville fractional q-integral operator to basic hypergeometric functions
  • Acta Ciencia Indica
  • 2004
Recurrence relations for the basic analogue of the Hfunction
  • J. Nat. Acad. Math
  • 1990
and q-dertvatives
  • Proc. Edin. Math. Soco 15 8. Prabhakar. T .R and Chakrabarty, M.: A (1966) . 135-140.
  • 1978
A class of basic integral equations with basic hypergeometric function 11(.) in the kernels
  • Indian J. Pure. Appl. Math
  • 1976
...
1
2
...