Kneading Theory for a Family of Circle Maps with One Discontinuity

@inproceedings{ALSED1999KneadingTF,
  title={Kneading Theory for a Family of Circle Maps with One Discontinuity},
  author={Ll. ALSED{\`A}},
  year={1999}
}
  • Ll. ALSEDÀ
  • Published 1999
(3) F (x+ 1) = F (x) + 1 for all x ∈ R. For a map F ∈ C and for each a ∈ Z we set F (a) = limx↓a F (x) and F (a) = limx↑a F (x). In view of (3) we have F (a ) = F (0) + a and F (a) = F (0) + a. Note that the exact value of F (0) is not specified. Then in what follows we consider that F (0) is either F (0) or F (0−), or both, as necessary. Since every map F ∈ C has a discontinuity in each integer, the class C can be considered as a family of liftings of circle maps with one discontinuity. The… CONTINUE READING

References

Publications referenced by this paper.
Showing 1-10 of 14 references

Prime and renormalisable kneading invariants and the dynamics of Lorenz maps

  • P. Glendining, C T.Sparrow
  • Phys. D
  • 1993

Kneading Theory and rotation intervals for a class of circle maps of degree one

  • Alsedà Ll, F. Mañosas
  • Nonlinearity
  • 1990

Kneading Theory and rotation intervals for a class of circle maps of degree one, Nonlinearity

  • Alsedà Ll, F Mañosas
  • 1990

The classification of topologically expansive Lorenz maps

  • M. Misiurewicz
  • Comm . Pure Appl . Math .
  • 1990

The classification of topologically expansive Lorenz maps, Comm

  • J. HS Hubbard, C T.Sparrow
  • Pure Appl. Math
  • 1990

Topological conjugation of Lorenz maps by β-transformations

  • P. Glendinning
  • Math. Proc. Camb. Phil. Soc
  • 1990

Topological conjugation of Lorenz maps by βtransformations , Math

  • P. Glendinning
  • Proc . Camb . Phil . Soc .
  • 1990

Periods and entropy for Lorenzlike maps, Ann

  • Ll. ALMT Alsedà, J. Llibre, M. Misiurewicz, C. Tresser
  • Inst. Fourier
  • 1989

Rotation intervals for a class of maps of the real line into itself, Ergod

  • M. Misiurewicz
  • Th. & Dynam. Sys
  • 1986

The Lorenz equations: Bifurcations, Chaos and Strange Attractors

  • C T.Sparrow
  • Appl. Math. Sci.,
  • 1982

Similar Papers

Loading similar papers…