Khinchin theorem and anomalous diffusion.

@article{Lapas2008KhinchinTA,
  title={Khinchin theorem and anomalous diffusion.},
  author={Luciano C. Lapas and Rafael S. Morgado and Mendeli H. Vainstein and J. Miguel Rub{\'i} and Fernando A L Oliveira},
  journal={Physical review letters},
  year={2008},
  volume={101 23},
  pages={
          230602
        }
}
A recent Letter [M. H. Lee, Phys. Rev. Lett. 98, 190601 (2007)] has called attention to the fact that irreversibility is a broader concept than ergodicity, and that therefore the Khinchin theorem [A. I. Khinchin, (Dover, New York, 1949)] may fail in some systems. In this Letter we show that for all ranges of normal and anomalous diffusion described by a generalized Langevin equation the Khinchin theorem holds. 

Figures from this paper.

References

Publications referenced by this paper.
SHOWING 1-10 OF 15 REFERENCES

Phys

G. M. Zaslavsky
  • Rep. 371, 461
  • 2002
VIEW 6 EXCERPTS
HIGHLY INFLUENTIAL

Rep

R. Kubo
  • Prog. Phys. 29, 255
  • 1966
VIEW 5 EXCERPTS
HIGHLY INFLUENTIAL

Phys

G. Margolin, E. Barkai
  • Rev. Lett. 94, 080601
  • 2005

A: Math

R. Metzler, J. Klafter, J. Phys
  • Gen. 37, 161
  • 2004
VIEW 1 EXCERPT

Phys

S. C. Kou, X. S. Xie
  • Rev. Lett. 93, 180603
  • 2004

Phys

F. Ricci-Tersenghi, D. A. Stariolo, J. J. Arenzon
  • Rev. Lett. 84, 4473
  • 2000

Phys

G. Parisi
  • Rev. Lett. 79, 3660
  • 1997

and S

M. D. Ediger, C. A. Angell
  • R. Nagel J. Phys. Chem. 100, 13200
  • 1996
VIEW 2 EXCERPTS

Nature 363

M. F. Shlesinger, G. M. Zaslavsky, J. Klafter
  • 31
  • 1993
VIEW 2 EXCERPTS

On the Development of the Methods of Theoretical Physics in Recent Times ” , in Theoretical Physics and Philosophical Problems , ( Dover , New York , 1949 ) . [ 4 ]

M. H. Lee
  • Mathematical Foundations of Statistical Mechanics
  • 1982