Kazhdan-Lusztig immanants III: Transition matrices between canonical bases of immanants

Abstract

We study two bases of the vector space of immanants of C[x1,1, . . . , xn,n]: the bitableaux basis of Désarménien-Kung-Rota, and a subset of the dual canonical basis called the basis of Kazhdan-Lusztig immanants. We show that the transition matrix between these bases is unitriangular, describe new vanishing results for the Kazhdan-Lusztig immanants, and… (More)

Cite this paper

@inproceedings{Rhoades2007KazhdanLusztigII, title={Kazhdan-Lusztig immanants III: Transition matrices between canonical bases of immanants}, author={Brendon Rhoades and Mark Skandera}, year={2007} }