Kawamata – Viehweg Vanishing as Kodaira Vanishing for Stacks

@inproceedings{Olsson2009KawamataV,
  title={Kawamata – Viehweg Vanishing as Kodaira Vanishing for Stacks},
  author={Martin W. Olsson},
  year={2009}
}
We associate to a pair (X, D), consisting of a smooth variety with a divisor D ∈ Div(X) ⊗ Q whose support has only normal crossings, a canonical Deligne–Mumford stack over X on which D becomes integral. We then reinterpret the Kawamata–Viehweg vanishing theorem as Kodaira vanishing for stacks. 
Highly Cited
This paper has 20 citations. REVIEW CITATIONS

References

Publications referenced by this paper.
Showing 1-10 of 11 references

Logarithmic structures of Fontaine-Illusie

  • K. Kato
  • Algebraic analysis, geometry, and number theory…
  • 1989
Highly Influential
10 Excerpts

Champs algébriques

  • G. Laumon, L. Moret-Bailly
  • Ergebnisse der Mathematik 39, Springer-Verlag…
  • 2000
Highly Influential
3 Excerpts

Introduction to the minimal model program

  • Y. Kawamata, K. Matsuda, K. Matsuki
  • Advanced Studies in Pure Math 10 (Algebraic…
  • 1987
1 Excerpt

Relévements modulo p 2 et décomposition du complexe de de Rham , Invent

  • J. Dieudonné, A. Grothendieck
  • 1987

Relévements modulo p2 et décomposition du complexe de de Rham

  • P. Deligne, L. Illusie
  • Invent. Math. 89
  • 1987
1 Excerpt

A generalization of Kodaira-Ramanujam’s vanishing theorem

  • Y. Kawamata
  • Math. Ann. 261
  • 1982
1 Excerpt

Vanishing theorems

  • E. Viehweg
  • J. reine angew. Math. 335
  • 1982
1 Excerpt

Rings of invariants of reductive groups acting on regular rings are Cohen– Macaulay

  • M. Hochster, J. Roberts
  • Advances in Math. 13
  • 1974
1 Excerpt

Similar Papers

Loading similar papers…