Kahler geometry of toric manifolds in symplectic coordinates
@article{Abreu2000KahlerGO, title={Kahler geometry of toric manifolds in symplectic coordinates}, author={Miguel Abreu}, journal={arXiv: Differential Geometry}, year={2000} }
A theorem of Delzant states that any symplectic manifold $(M,\om)$ of dimension $2n$, equipped with an effective Hamiltonian action of the standard $n$-torus $\T^n = \R^{n}/2\pi\Z^n$, is a smooth projective toric variety completely determined (as a Hamiltonian $\T^n$-space) by the image of the moment map $\phi:M\to\R^n$, a convex polytope $P=\phi(M)\subset\R^n$. In this paper we show, using symplectic (action-angle) coordinates on $P\times \T^n$, how all $\om$-compatible toric complex…
186 Citations
Toric generalized Kähler structures
- MathematicsJournal of Symplectic Geometry
- 2019
Given a compact symplectic toric manifold $(M,\omega, \mathbb{T})$, we identify a class $DGK_{\omega}^{\mathbb{T}}(M)$ of $\mathbb{T}$-invariant generalized K\"ahler structures for which a…
Complex symplectomorphisms and pseudo-Kähler islands in the quantization of toric manifolds
- Mathematics
- 2014
Let $$P$$P be a Delzant polytope. We show that the quantization of the corresponding toric manifold $$X_{P}$$XP in toric Kähler polarizations and in the toric real polarization are related by…
Bergman kernels and equilibrium measures for line bundles over projective manifolds
- Mathematics
- 2007
Let $L$ be a holomorphic line bundle over a compact complex projective Hermitian manifold $X.$ Any fixed smooth hermitian metric $\phi$ on $L$ induces a Hilbert space structure on the space of global…
Toric Aspects of the First Eigenvalue
- Mathematics
- 2015
In this paper we study the smallest non-zero eigenvalue $$\lambda _1$$λ1 of the Laplacian on toric Kähler manifolds. We find an explicit upper bound for $$\lambda _1$$λ1 in terms of moment polytope…
Construct $b$-symplectic toric manifolds from toric manifolds
- Mathematics
- 2019
In \cite{btoric}, Guillemin et al. proved a Delzant-type theorem which classifies $b$-symplectic toric manifolds. More generally, in \cite{torus} they proved a similar convexity result for general…
Almost all Lagrangian torus orbits in $${\mathbb C}P^n$$CPn are not Hamiltonian volume minimizing
- Mathematics
- 2015
All principal orbits of the standard Hamiltonian $$T^n$$Tn-action on the complex projective space $${\mathbb C}P^n$$CPn are Lagrangian tori. In this article, we prove that most of them are not volume…
Some remarks on the symplectic and Kähler geometry of toric varieties
- MathematicsAnnali di Matematica Pura ed Applicata (1923 -)
- 2015
Let M be a projective toric manifold. We prove two results concerning, respectively, Kähler–Einstein submanifolds of M and symplectic embeddings of the standard Euclidean ball in M. Both results use…
Bernstein polynomials, Bergman kernels and toric Kähler varieties
- Mathematics
- 2007
It does not seem to have been observed previously that the classical Bernstein polynomials $B_N(f)(x)$ are closely related to the Bergman-Szego kernels $\Pi_N$ for the Fubini-Study metric on $\CP^1$:…
Complete Ricci-flat K\"ahler metrics on the canonical bundles of toric Fano manifolds
- Mathematics
- 2007
We prove the existence of a complete Ricci-flat K\"ahler metric on the total space of the canonical line bundle $K_M$ of a toric Fano manifold $M$ as an application of the existence result of toric…
Resolution à la Kronheimer of $$\mathbb {C}^3/\Gamma $$ singularities and the Monge–Ampère equation for Ricci-flat Kähler metrics in view of D3-brane solutions of supergravity
- MathematicsLetters in Mathematical Physics
- 2021
In this paper, we analyze the relevance of the generalized Kronheimer construction for the gauge/gravity correspondence. We begin with the general structure of D3-brane solutions of type IIB…
References
SHOWING 1-10 OF 23 REFERENCES
On the invariant spectrum of $S^1$-invariant metrics on $S^2$
- Mathematics
- 1999
A theorem of J. Hersch (1970) states that for any smooth metric on $S^2$, with total area equal to $4\pi$, the first nonzero eigenvalue of the Laplace operator acting on functions is less than or…
KÄHLER GEOMETRY OF TORIC VARIETIES AND EXTREMAL METRICS
- Mathematics
- 1997
A (symplectic) toric variety X, of real dimension 2n, is completely determined by its moment polytope Δ ⊂ ℝn. Recently Guillemin gave an explicit combinatorial way of constructing "toric" Kahler…
The moduli space of special Lagrangian submanifolds
- Mathematics
- 1997
This paper considers the natural geometric structure on the moduli space of deformations of a compact special Lagrangian submanifold $L^n$ of a Calabi-Yau manifold. From the work of McLean this is a…
Kaehler structures on toric varieties
- Mathematics
- 1994
1. Let (X, ω) be a compact connected 2w-dimensional manifold, and let (1.1) τ: T -+Όifί(X, ω) be an effective Hamiltonian action of the standard w-torus. Let φ: X —> R be its moment map. The image,…
Extremal Kähler Metrics II
- Mathematics
- 1985
Given a compact, complex manifold M with a Kahler metric, we fix the deRham cohomology class Ω of the Kahler metric, and consider the function space ℊΩ of all Kahler metrics in M in that class. To…
Upper bound for the first eigenvalue of algebraic submanifolds
- Mathematics
- 1994
1. Statement of results Let M be a compact manifold endowed with a Riemannian metric. The spectrum of the Laplacian, A, acting on functions form a discrete set of the form {0 < ),~ < 22 < �9 �9 �9 <…
On the Invariant Spectrum of S1‐Invariant Metrics on S2
- Mathematics
- 2002
A theorem of J. Hersch (1970) states that for any smooth metric on S2, with total area equal to 4π, the first non‐zero eigenvalue of the Laplace operator acting on functions is less than or equal to…
The existence of Kähler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group
- Mathematics
- 1988
On utilise la methode de continuite pour demontrer l'existence de metriques de Kahler-Einstein pour des varietes de Kahler de fibre linge positif anticanonique sous l'hypothese additionnelle de…
Lectures on Special Lagrangian Submanifolds
- Mathematics
- 1999
These notes consist of a study of special Lagrangian submanifolds of Calabi-Yau manifolds and their moduli spaces. The particular case of three dimensions, important in string theory, allows us to…