Kac and new determinants for fractional superconformal algebras.

@article{Kakushadze1994KacAN,
  title={Kac and new determinants for fractional superconformal algebras.},
  author={Kakushadze and Tye},
  journal={Physical review. D, Particles and fields},
  year={1994},
  volume={49 8},
  pages={
          4122-4138
        }
}
  • Kakushadze, Tye
  • Published 1994 in Physical review. D, Particles and fields
We derive the Kac and new determinant formulae for an arbitrary (integer) level K fractional superconformal algebra using the BRST cohomology techniques developed in conformal field theory. In particular, we reproduce the Kac determinants for the Virasoro (K = 1) and superconformal (K = 2) algebras. For K ≥ 3 there always exist modules where the Kac determinant factorizes into a product of more fundamental new determinants. Using our results for general K, we sketch the non-unitarity proof for… CONTINUE READING

From This Paper

Topics from this paper.

Citations

Publications citing this paper.
Showing 1-2 of 2 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 14 references

Int. J. Mod. Phys

S Chung, E Lyman, S.-H H Tye
Int. J. Mod. Phys • 1992

Nucl. Phys

C Argyres, J Grochocinski, S.-H H Tye
Nucl. Phys • 1991

Phys. Rev. Lett. Commun. Math. Phys. Phys. Rev. Lett. Phys. Rev. Lett

C Argyres, S.-H H Tye, K R Dienes, Nucl Phys
Phys. Rev. Lett. Commun. Math. Phys. Phys. Rev. Lett. Phys. Rev. Lett • 1991

Nucl. Phys

G Felder
Nucl. Phys • 1989

Phys. Rev. Lett. F. Ravanini, Mod. Phys. Lett

D Kastor, E Martinec, Z Qiu, Phys Lett
Phys. Rev. Lett. F. Ravanini, Mod. Phys. Lett • 1988

Theor. Math. Phys

B Zamolodchikov, V A Fateev
Theor. Math. Phys • 1987

Commun. Math. Phys

P Goddard, A Kent, D Olive
Commun. Math. Phys • 1986

Phys. Lett

D Friedan, Z Qiu, +4 authors M G Teitelman
Phys. Lett • 1985

Nucl. Phys

G Knizhnik, A B Zamolodchikov
Nucl. Phys • 1984