KELLER: estimating time-varying interactions between genes

Abstract

MOTIVATION Gene regulatory networks underlying temporal processes, such as the cell cycle or the life cycle of an organism, can exhibit significant topological changes to facilitate the underlying dynamic regulatory functions. Thus, it is essential to develop methods that capture the temporal evolution of the regulatory networks. These methods will be an enabling first step for studying the driving forces underlying the dynamic gene regulation circuitry and predicting the future network structures in response to internal and external stimuli. RESULTS We introduce a kernel-reweighted logistic regression method (KELLER) for reverse engineering the dynamic interactions between genes based on their time series of expression values. We apply the proposed method to estimate the latent sequence of temporal rewiring networks of 588 genes involved in the developmental process during the life cycle of Drosophila melanogaster. Our results offer the first glimpse into the temporal evolution of gene networks in a living organism during its full developmental course. Our results also show that many genes exhibit distinctive functions at different stages along the developmental cycle. AVAILABILITY Source codes and relevant data will be made available at http://www.sailing.cs.cmu.edu/keller.

DOI: 10.1093/bioinformatics/btp192

Extracted Key Phrases

7 Figures and Tables

0102020102011201220132014201520162017
Citations per Year

98 Citations

Semantic Scholar estimates that this publication has 98 citations based on the available data.

See our FAQ for additional information.

Cite this paper

@article{Song2009KELLERET, title={KELLER: estimating time-varying interactions between genes}, author={Le Song and Mladen Kolar and Eric P. Xing}, journal={Bioinformatics}, year={2009}, volume={25}, pages={i128 - i136} }