KAZHDAN-LUSZTIG-POLYNOME UND UNZERLEGBARE BIMODULN ÜBER POLYNOMRINGEN
@article{Soergel2004KAZHDANLUSZTIGPOLYNOMEUU, title={KAZHDAN-LUSZTIG-POLYNOME UND UNZERLEGBARE BIMODULN {\"U}BER POLYNOMRINGEN}, author={Wolfgang Soergel}, journal={Journal of the Institute of Mathematics of Jussieu}, year={2004}, volume={6}, pages={501 - 525} }
Wir entwickeln eine Strategie zum Beweis der Positivität der Koeffizienten von Kazhdan-Lusztig-Polynomen für beliebige Coxeter-Gruppen. We develop a strategy to prove the positivity of coefficients of Kazhdan–Lusztig polynomials for arbitrary Coxeter groups.
175 Citations
Relative hard Lefschetz for Soergel bimodules
- MathematicsJournal of the European Mathematical Society
- 2016
We prove the relative hard Lefschetz theorem for Soergel bimodules. It follows that the structure constants of the Kazhdan-Lusztig basis are unimodal. We explain why the relative hard Lefschetz…
Kazhdan–Lusztig Conjectures and Shadows of Hodge Theory
- Mathematics
- 2016
We give an informal introduction to the authors’ work on some conjectures of Kazhdan and Lusztig, building on work of Soergel and de Cataldo–Migliorini. This article is an expanded version of a…
The Hodge Theory of Soergel Bimodules
- MathematicsIntroduction to Soergel Bimodules
- 2020
We prove Soergel’s conjecture on the characters of indecomposable Soergel bimodules. We deduce that Kazhdan-Lusztig polynomials have positive coecients for arbitrary Coxeter systems. Using results of…
Modular Koszul duality for Soergel bimodules
- Mathematics
- 2017
We generalize the modular Koszul duality of Achar-Riche to the setting of Soergel bimodules associated to any finite Coxeter system. The key new tools are a functorial monodromy action and…
Categorification of a Recursive Formula for Kazhdan–Lusztig Polynomials
- Mathematics
- 2015
We obtain explicit branching rules for graded cell modules and graded simple modules over the endomorphism algebra of a Bott–Samelson bimodule. These rules allow us to categorify a well-known…
Soergel bimodules for universal Coxeter groups
- Mathematics
- 2014
We produce an explicit recursive formula which computes the idempotent projecting to any indecomposable Soergel bimodule for a universal Coxeter system. This gives the exact set of primes for which…
Jucys-Murphy operators for Soergel bimodules
- Mathematics
- 2016
We produce Jucys-Murphy elements for the diagrammatical category of Soergel bimodules associated with general Coxeter groups, and use them to diagonalize the bilinear form on the cell modules. This…
GENERATORS AND RELATIONS FOR SOERGEL BIMODULES
- Mathematics
- 2013
The monoidal category of Soergel bimodules is an incarnation of the Hecke category and plays a fundamental role in Kazhdan-Lusztig theory. We present this category by generators and relations, using…
References
SHOWING 1-10 OF 14 REFERENCES
Representations of Coxeter groups and Hecke algebras
- Mathematics
- 1979
here l(w) is the length of w. In the case where Wis a Weyl group and q is specialized to a fixed prime power, | ~ can be interpreted as the algebra of intertwining operators of the space of functions…
From moment graphs to intersection cohomology
- Mathematics
- 2000
Abstract. We describe a method of computing equivariant and ordinary intersection cohomology of certain varieties with actions of algebraic tori, in terms of structure of the zero- and…
Reflection groups and coxeter groups
- Mathematics
- 1990
Part I. Finite and Affine Reflection Groups: 1. Finite reflection groups 2. Classification of finite reflection groups 3. Polynomial invariants of finite reflection groups 4. Affine reflection groups…
On the relation between intersection cohomology and representation theory in positive characteristic
- Mathematics
- 2000
Infinite-dimensional Lie algebras
- Mathematics
- 1974
1. Basic concepts.- 1. Preliminaries.- 2. Nilpotency and solubility.- 3. Subideals.- 4. Derivations.- 5. Classes and closure operations.- 6. Representations and modules.- 7. Chain conditions.- 8.…
On some generalisations of the Kazhdan-Lusztig polynomials for “universal” Coxeter systems
- Mathematics
- 1988
Untersuchungen zu den Kazhdan-Lusztig-Polynomen und zu dazupassenden Bimoduln
- Diplomarbeit in Freiburg
- 1999
und die Topologie der Fahnenmannigfaltigkeit einer Kac-Moody-Gruppe
- Dissertation in Freiburg
- 1999