K1 of Chevalley Groups Are Nilpotent

@inproceedings{Vavilov2001K1OC,
  title={K1 of Chevalley Groups Are Nilpotent},
  author={Nikolai Vavilov},
  year={2001}
}
Let Φ be a reduced irreducible root system and R be a commutative ring. We consider the corresponding simply connected Chevalley group G = G(Φ, R) and its elementary subgroup E(Φ, R). When rk(Φ) ≥ 2 it is proven by Suslin and Kopeiko [17], [18], [11] for the classical cases and by Taddei [20] for the exceptional cases, that E(Φ, R) is normal in G(Φ, R), so that one can consider the K1-functor modeled on G: 
Highly Cited
This paper has 18 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

References

Publications referenced by this paper.
Showing 1-10 of 27 references

Non-abelian K-Theory: The nilpotent class of K1 and general stability

  • A. Bak
  • K-Theory 4
  • 1991
Highly Influential
12 Excerpts

A module structure on certain orbit sets of unimodular rows

  • W. van der Kallen
  • J. Pure Appl. Algebra,
  • 1989
Highly Influential
8 Excerpts

Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau

  • G. Taddei
  • Contemp. Math., 55 (II),
  • 1986
Highly Influential
6 Excerpts

On the structure of the general linear group over polynomial rings

  • A. Suslin
  • Soviet Math. Izv., 41 (2),
  • 1977
Highly Influential
6 Excerpts

On the structure of the general linear group over polynomial rings , Soviet Math

  • A. Suslin
  • Izv .
  • 2000

On the word length of commutators in GLn(R)

  • A. Sivatsky, A. Stepanov
  • K-Theory , 17,
  • 1999
1 Excerpt

Normality for elementary subgroup functors

  • A. Bak, N. Vavilov
  • Math. Proc. Cambridge Philos. Soc. 118 (1),
  • 1995
2 Excerpts

Similar Papers

Loading similar papers…