Kähler-ricci Solitons on Toric Manifolds with Positive First Chern Class

@inproceedings{Wang2004KhlerricciSO,
  title={K{\"a}hler-ricci Solitons on Toric Manifolds with Positive First Chern Class},
  author={Xu-Jia Wang and Xiaohua Zhu},
  year={2004}
}
In this paper we prove there exists a Kähler-Ricci soliton, unique up to holomorphic automorphisms, on any toric Kähler manifold with positive first Chern class, and the Kähler-Ricci soliton is a Kähler-Einstein metric if and only if the Futaki invariant vanishes. 
Highly Cited
This paper has 95 citations. REVIEW CITATIONS

From This Paper

Topics from this paper.

Citations

Publications citing this paper.

References

Publications referenced by this paper.
Showing 1-10 of 34 references

On the Ricci curvature of a compact Kähler manifold and the complex MongeAmpère equation , I ,

  • S. T. Yau
  • Comm . Pure Appl . Math .
  • 2002

Kähler-Ricci soliton type equations on compact complex manifolds with C1(M

  • X. H. Z Zhu
  • J. Geom. Anal
  • 2000

Kähler - Einstein metrics on complex surfaces with C 1 > 0 ,

  • G. Tian, S. T. Yau
  • Comm . Math . Phys .
  • 1997

Kähler-Einstein metrics with positive scalar curvature

  • G. Tian
  • Invent. Math
  • 1997

Limits of solutions of the Kähler-Ricci flow

  • H. D. Cao
  • J. Differ. Geom
  • 1997

Similar Papers

Loading similar papers…