Joint Models of Disagreement and Stance in Online Debate

Abstract

Online debate forums present a valuable opportunity for the understanding and modeling of dialogue. To understand these debates, a key challenge is inferring the stances of the participants, all of which are interrelated and dependent. While collectively modeling users’ stances has been shown to be effective (Walker et al., 2012c; Hasan and Ng, 2013), there are many modeling decisions whose ramifications are not well understood. To investigate these choices and their effects, we introduce a scalable unified probabilistic modeling framework for stance classification models that 1) are collective, 2) reason about disagreement, and 3) can model stance at either the author level or at the post level. We comprehensively evaluate the possible modeling choices on eight topics across two online debate corpora, finding accuracy improvements of up to 11.5 percentage points over a local classifier. Our results highlight the importance of making the correct modeling choices for online dialogues, and having a unified probabilistic modeling framework that makes this possible.

Extracted Key Phrases

7 Figures and Tables

01020201520162017
Citations per Year

Citation Velocity: 13

Averaging 13 citations per year over the last 3 years.

Learn more about how we calculate this metric in our FAQ.

Cite this paper

@inproceedings{Sridhar2015JointMO, title={Joint Models of Disagreement and Stance in Online Debate}, author={Dhanya Sridhar and James R. Foulds and Bert Huang and Lise Getoor and Marilyn A. Walker}, booktitle={ACL}, year={2015} }