Ja n 20 05 Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models

@inproceedings{Evans2005JaN2,
  title={Ja n 20 05 Nonequilibrium Statistical Mechanics of the Zero-Range Process and Related Models},
  author={Martin R. Evans and T. Hanney},
  year={2005}
}
We review recent progress on the zero-range process, a model of interacting particles which hop between the sites of a lattice with rates that depend on the occupancy of the departure site. We discuss several applications which have stimulated interest in the model such as shaken granular gases and network dynamics, also we discuss how the model may be used as a coarse-grained description of driven phase-separating systems. A useful property of the zero-range process is that the steady state… CONTINUE READING
53 Citations
41 References
Similar Papers

Citations

Publications citing this paper.
Showing 1-10 of 53 extracted citations

References

Publications referenced by this paper.
Showing 1-10 of 41 references

J. Eggers Phys. Rev. Lett

  • J. Eggers Phys. Rev. Lett
  • 1999
Highly Influential
6 Excerpts

J. Stat. Mech. : Theor. Exp

  • R K P Zia, M R Evans, S N Majumdar
  • J. Stat. Mech. : Theor. Exp
  • 2004

J. Stat. Mech.: Theor. Exp

  • D Levine, G Mukamel, Ziv
  • J. Stat. Mech.: Theor. Exp
  • 2004

J. Stat. Mech.:Theor. Exp

  • A G Angel, M R Evans, D Mukamel
  • J. Stat. Mech.:Theor. Exp
  • 2004

J. Stat. Mech.:Theory and Experiment

  • D Van Der Meer, K Van Der Weele, D Lohse
  • J. Stat. Mech.:Theory and Experiment
  • 2004
2 Excerpts

J. Török

  • J. Török
  • 2004
2 Excerpts

Mathematical Methods for Physicists

  • See E G A B Arfken, H J Weber
  • Mathematical Methods for Physicists
  • 2004

Phys. Rev. E

  • A M Povolotsky
  • Phys. Rev. E
  • 2004

Bull. Braz. Math. Soc

  • S Großkinsky, H Spohn
  • Bull. Braz. Math. Soc
  • 2003

J Phys A: Math Gen

  • F Zielen, A Schadschneider
  • J Phys A: Math Gen
  • 2003

Similar Papers

Loading similar papers…