Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes

@article{Harron2014IwasawaTF,
  title={Iwasawa theory for symmetric powers of CM modular forms at non-ordinary primes},
  author={R. Harron and Antonio Lei},
  journal={Journal de Theorie des Nombres de Bordeaux},
  year={2014},
  volume={26},
  pages={673-707}
}
  • R. Harron, Antonio Lei
  • Published 2014
  • Mathematics
  • Journal de Theorie des Nombres de Bordeaux
  • Let f be a cuspidal newform with complex multiplication (CM) and let p be an odd prime at which f is non-ordinary. We construct admissible p-adic L-functions for the symmetric powers of f, thus verifying general conjectures of Dabrowski and Panchishkin in this special case. We also construct their "mixed" plus and minus counterparts and prove an analogue of Pollack's decomposition of the admissible p-adic L-functions into mixed plus and minus p-adic L-functions. On the arithmetic side, we… CONTINUE READING
    6 Citations

    References

    SHOWING 1-10 OF 59 REFERENCES
    IWASAWA THEORY FOR THE SYMMETRIC SQUARE OF A CM MODULAR FORM AT INERT PRIMES
    • 2
    • PDF
    Iwasawa theory for modular forms at supersingular primes
    • 29
    • PDF
    p-adic L-functions of automorphic forms
    • 3
    • PDF
    Algebras of p-adic distributions and admissible representations
    • 209
    • PDF
    Coleman maps and the p-adic regulator
    • 28
    • PDF
    Modular forms and p-adic Hodge theory
    • 101